Answer: 2.34s
Explanation:
Given the following :
Horizontal Velocity(V) = 3.22m/s
Horizontal Distance = 7.54m
Therefore, the time spent in the air can be calculated thus:
Using the relation:
Speed = distance / time
3.22m/s = 7.54m / time
Time = 7.54m / 3.22m/s
Time = 2.34s
Answer:
A IS THE ANSWER
Explanation:
HOPE IT HELPS AND PLEASE MARK AS BRAINLIST
Answer:
vf²=vi²+2a∆x
Explanation:
The third equation of motion gives the final velocity of an object under uniform acceleration given the distance traveled and an initial velocity: v 2 = v 0 2 + 2 a d . v^2=v_0^2+2ad. v2=v02+2ad. The graph of the motion of the object.
Answer:
The error he made was that he didn't convert the unit of temperature to Kelvin.
The correct efficiency is 24%
Explanation:
Parameters given:
Temperature of hot reservoir = 100°C = 373 K
Temperature of cold reservoir = 10°C = 273 K
The efficiency of a heat engine is given as:
E = 1 - (Qc/Qh) = 1 - (Tc/Th)
Where
Qc = Output heat;
Qh = Input heat;
Tc = Temperature of the cold reservoir;
Th = Temperature of the hot reservoir.
=> E = 1 - (283/373)
E = 1 - 0.76
E = 0.24
In percentage,
E = 0.24 * 100 = 24%
Hence, the efficiency of the engine is actually 24%.
The error he made was that he didn't convert the temperature to Kelvin. If we leave the temperatures in °C, we have that:
E = 1 - (10/100)
E = 1 - 0.1 = 0.9
In percentage,
E = 0.9 * 100 = 90%