I have 65 ten thousandths
Answer: it think the answer is 8
Sorry if I’m wrong
So the first three possible values of g^2 + 3 are:
3, 4, 7
The first option is the correct one.
<h3>
Which ones are the first three possible values?</h3>
The set of the whole numbers is {0, 1, 2, 3...}
Then the first possible value is when g = 0.
0^2 + 3 = 3
The second possible value is when g = 1
1^2 + 3 = 4
The third possible value is when g = 2.
2^2 + 3 = 7
So the first three possible values of g^2 + 3 are:
3, 4, 7
The first option is the correct one.
If you want to learn more about whole numbers:
brainly.com/question/5243429
#SPJ1
28 degrees is the answer , 76+76= 152, 180-152+ 28
Answer:
The products of AB and BA is given by
AB=![\left[\begin{array}{cc}21&-6\\ 9&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D21%26-6%5C%5C%209%263%5Cend%7Barray%7D%5Cright%5D)
BA=![\left[\begin{array}{cc}9&-1\\-18&15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%26-1%5C%5C-18%2615%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given the matrices A=
and
B=![\left[\begin{array}{cc}1&-1\\-3&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26-1%5C%5C-3%260%5Cend%7Barray%7D%5Cright%5D)
To find the product AB and BA
AB=![\left[\begin{array}{cc}6&-5\\-3&-4\end{array}\right] \left[\begin{array}{cc}1 & -1\\-3 &0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-5%5C%5C-3%26-4%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%20%26%20-1%5C%5C-3%20%260%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{cc}6+15& -6+0\\-3+12&3-0\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%2B15%26%20-6%2B0%5C%5C-3%2B12%263-0%5Cend%7Barray%7D%5Cright%5D)
Therefore the product of AB is
AB=![\left[\begin{array}{cc}21&-6\\ 9&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D21%26-6%5C%5C%209%263%5Cend%7Barray%7D%5Cright%5D)
BA=
![\left[\begin{array}{cc}6&-5\\-3&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%26-5%5C%5C-3%26-4%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{cc}6+3& -5+4\\-18+0&15+0\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%2B3%26%20-5%2B4%5C%5C-18%2B0%2615%2B0%5Cend%7Barray%7D%5Cright%5D)
Therefore the product of BA is
BA=![\left[\begin{array}{cc}9&-1\\-18&15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%26-1%5C%5C-18%2615%5Cend%7Barray%7D%5Cright%5D)
The products of AB and BA is given by
AB=![\left[\begin{array}{cc}21&-6\\ 9&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D21%26-6%5C%5C%209%263%5Cend%7Barray%7D%5Cright%5D)
BA=![\left[\begin{array}{cc}9&-1\\-18&15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%26-1%5C%5C-18%2615%5Cend%7Barray%7D%5Cright%5D)