Player 2 because moment is mass times acceleration and since they are all going the same speed. Speed doesn't matter so the only thing that is left is mass/ weight and he has the most
Answer:
The stitches and dimples around a baseball and a golf ball respectively, disturbs the air drag on the balls once they are in motion, allowing the them to travel more easily.
Explanation:
The stitches on a baseball disturbs the air drag on the ball when the ball is in motion, allowing the ball to travel more easily. Depending on the orientation of the ball in flight, the drag changes as the flow is disturbed by the stitches.
A smooth ball with no stitches or dimples has more air drag that opposes the motion.
A golf ball is smooth ball with dimples to create a thin turbulent boundary layer of air that clings to the ball's surface. This allows the smoothly flowing air to follow the ball's surface a little farther around the back side of the ball, thereby decreasing the size of the wake, and allowing the ball to travel more easily.
Answer:
Option b
Explanation:
Metamorphism is the process where the variation of the geological texture resulting from the different arrangement of the minerals or the variation of minerals in protoliths, i.e., pre- existing rocks take place such that there occurs no change in state of the protolith, i.e., it does not melt into magma.
The change takes place as a result of the presence of chemically active fluids, heat and pressure.
There is a reaction between the chemically active fluid and the rock through which it passes and promotes the movement of the dissolved ions of silicate and promotes the growth of the mineral grains.
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
The appropriate response is Zero degrees. The beam will leave the two mirrors along a way parallel to the one it came in on. This is the guideline of the corner reflector, which is frequently utilized as a radar target. Take note of that the corner reflector utilizes three reflecting surfaces (that are set up at 90o from each other) rather than the two like are being utilized here. Wikipedia has a truly awesome drawing that shows this two-dimentional issue pleasantly. A moment connection is given to the article on the corner reflector and the 3-D angles.