Answer:
It takes
to accelerate the object from rest to the speed v.
Explanation:
From Newton's second law:
(1)
and the definition of acceleration,
(2)
we can solve this problem. Putting (2) in (1) we have:
and solving for
and considering the initial time as zero (
) and the initial velocity also zero (
) we have:

Now, for a mass
and the
we can wrtie the same equation:
and substituting
and
:

So now, it only takes half the time to accelerate the object from rest to the speed v
Answer:
ΔL = L0 C ΔT
We need to find C the constant of expansivity
C = ΔL / (L0 ΔT)
C = .96 / (15.04 * 65) = 9.82 * 10^-4 / deg C
Answer:
Here's the equation for net force: F = ma. The work done on the plane, which becomes its kinetic energy, equals the following: Net force F equals mass times acceleration. Assume that you're pushing in the same direction that the plane is going; in this case, cos 0 degrees = 1, so.
Explanation:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes
Hope this help also looking it up helps ;)
Answer: 0.192 N/m
Explanation:
Well, generally when a Hooke's Law experiment is performed the plot is in fact Force vs Displacement, being the Force (in units of Newtons) in the Y-axis and the Displacement (in units of meters) in the X-axis.
In addition, if we add a linear fit the resultant equation will be the Line equation of the form:

Where
is the slope and
is the point where the line intersects the Y-axis.
So, if the equation is:

The slope of this line is
which is also the spring constant
.