1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
2 years ago
6

The whale shark is the largest of all fish and can have the mass of three adult

Physics
1 answer:
ch4aika [34]2 years ago
3 0

Answer:

m = 20,000 kg

Explanation:

Force, F=2.5\times 10^4\ N

Acceleration of the shark, a=1.25\ m/s^2

It is required to find the mass of the shark. Let m is the mass. Using second law of motion to find it as follows :

F = ma

Putting the value of F and a to find m

m=\dfrac{F}{a}\\\\m=\dfrac{2.5\times 10^4}{1.25}\\\\m=20,000\ kg

So, the shark's mass is 20,000 kg.

You might be interested in
A 100g block lies on an inclined plane that makes an angle of 15 degrees with the horizontal. The coefficient of kinetic frictio
Fed [463]

Answer:

Mass that one should put in the container so that the 100 g block slides down the inclined plane at constant speed = 34.16 g

Explanation:

The vertical forces (with respect to the inclined plane) acting on the 100 g block include the component of the weight of the block in the direction vertical to the inclined plane and the normal reaction of the plane on the block.

And sum of upward forces = sum of downward forces.

N = mg cos θ

m = 100 g = 0.10 kg

g = acceleration due to gravity = 9.8 m/s²

θ = 15°

N = (0.1×9.8×cos 15°) = 0.946582 N

The horizontal forces (With respect to the inclined plane) include the frictional force (acting upwards for the inclined plane, opposite to the intended direction of motion), the Tension in the rope (acting downwards, away from the 100 g block) and the horizontal component (with respect to the inclined plane) of the weight of the block, F, (also acting downards).

For the body to slide down the inclined plane at constant speed, the downward sloping forces must balance the frictional force, that is, there will be no acceleration.

Frictional force = Tension + F

Frictional force = μN

where μ = coefficient of kinetic friction = 0.60

N = normal reaction = 0.9466 N

Frictional force = Fr = (0.60 × 0.9466) = 0.56796 N = 0.568 N

The horizontal component (with respect to the inclined plane) of the weight of the block (also acting downards) = mg sin θ

F = (0.10 × 9.8 × sin 15°) = 0.253624 N

Tension in the rope = T = ?

Fr = F + T

T = Fr - F = 0.568 - 0.253624 = 0.314376 N = 0.3144 N

But the balance on the rope now has the total weight on the container (weight of container + weight on the container) to be equal to 2T.

2T = mg

2 × 0.3144 = 9.8m

m = 0.06416 kg = 64.16 g.

Mass of the container = 30 g

So, mass that one should put in the container so that the 100 g block slides down the inclined plane at constant speed = 64.16 - 30 = 34.16 g

Hope this Helps!!!

8 0
3 years ago
If we warm a volume of air, it expands. Does it then follow that if we expand a volume of air, it warms? Explain.
Ivahew [28]

Answer:

nope don't think so

Explanation:

the heat causes the molecules to move faster therefore expanding in watever it the air is in

3 0
2 years ago
Read 2 more answers
A ball is dropped from a building taking 3sec to fall to the ground. Calculate:
GenaCL600 [577]

Answer:

Vf = 29.4 m/s

h = 44.1 m

Explanation:

Data:

  • Initial Velocity (Vo) = 0 m/s
  • Gravity (g) = 9.8 m/s²
  • Time (t) = 3 s
  • Final Velocity (Vf) = ?
  • Height (h) = ?

==================================================================

Final Velocity

Use formula:

  • Vf = g * t

Replace:

  • Vf = 9.8 m/s² * 3s

Multiply:

  • Vf = 29.4 m/s

==================================================================

Height

Use formula:

  • \boxed{h=\frac{g*(t)^{2}}{2}}

Replace:

  • \boxed{h=\frac{9.8\frac{m}{s^{2}}*(3s)^{2}}{2}}

Multiply time squared:

  • \boxed{h=\frac{9.8\frac{m}{s^{2}}*9s^{2}}{2}}

Simplify the s², and multiply in the numerator:

  • \boxed{h=\frac{88.2m}{2}}

It divides:

  • \boxed{h=44.1\ m}

What is the velocity when falling to the ground?

The final velocity is <u>29.4 meters per seconds.</u>

How high is the building?

The height of the building is <u>44.1 meters.</u>

3 0
2 years ago
Two equal point charges QQQ are separated by a distance ddd. One of the charges is released and moves away from the other due on
lys-0071 [83]

Answer:

The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd

Explanation:

The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.

Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.

From the law of conservation of energy, U₁ + K₁ = U₂ + K₂

So, kQ²/d + 0 = kQ²/3d + K

K₂ = kQ²/d - kQ²/3d = 2kQ²/3d

So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd

4 0
3 years ago
Si un automóvil va viajando y por la cantidad de tráfico, avanza, se detiene, acelera, baja la velocidad, se detiene y luego sig
Fynjy0 [20]

Answer:

english please

Explanation:

6 0
2 years ago
Other questions:
  • If energy is conserved, why do people get tired , and why are we running short on “energy supplies?”
    8·1 answer
  • Without surfactant, _______.
    9·1 answer
  • Acceleration is best defined as the rate of change of what object?
    15·1 answer
  • Canada geese migrate essentially along a north–south direction for well over a thousand kilo-meters in some cases, traveling at
    9·1 answer
  • The work done on a box is 532 joules. The force applied to the box was 48 N. What was the displacement of the box? *
    7·1 answer
  • A uniformly charged rod of length L = 1.3 m lies along the x-axis with its right end at the origin. The rod has a total charge o
    11·1 answer
  • Determina el trabajo realizado al desplazar un bloque 3 m sobre una superficie horizontal, si se desprecia la fricción y la fuer
    10·1 answer
  • A baseball with a mass of 151 g is thrown horizontally with a speed of 40.3 m/s (90 mi/h) at a bat. The ball is in contact with
    11·1 answer
  • Plz and I don't know this plz help me​
    6·2 answers
  • Help meh in this question plzzz <br>​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!