Answer:
The correct answer is - the large cross-sectional area and greater length of the cytoplasmic core get less resistance than the smaller cross-sectional area.
Explanation:
The greater length and the large cross-sectional area of the cytoplasmic path or core get less resistance than the resistance of the current path which is the small cross-sectional area of axoplasm. This leads it to greater resistance than the resistance of the current path through the extracellular fluid.
Other than this there is also an unequal distribution of the ions that leads to the increase in potential difference as higher Na+ ions present in cytoplasm and high amount of K+ ion present in axoplasm.
Since each codon consist of 3 nucleotides, 4 cordons can be formed by 12 nucleotides. (but please make sure that you check this answer. I am not completely sure)
Answer:
i) Glucose
ii) β(1-4) glycosidic bonds.
iii) Oxygen
Explanation:
Cellulose is an important structural carbohydrate found in plants. It forms a major component of the plant cell wall.
Cellulose is a polysaccharide formed by monomers of glucose. These glucose monomers are joined together by covalent bonds called β(1-4) glycosidic bonds, which means that the 1st carbon of one glucose is bound to the 4th carbon of the next glucose. To make this arrangement, every other glucose molecule in cellulose is inverted, which you can see in the diagram.
Glucose monomers contain carbon, hydrogen, and oxygen only. If you look at the pattern of the molecule (remembering every second glucose is inverted), you can see that Z must be O.
The functional group denoted by Z is oxygen. The OH groups on the glucose from one cellulose chain form hydrogen bonds with oxygen atoms on the same or on another chain, holding the chains firmly together and forming very strong molecules - giving cellulose its strength.
Carbon is relatively small. non - bulky atom that shares electrons easily .
Hope this helps!!!
Answer:
The amount of weight lost and the diet medication