Hydroelectric plants are used to produce electricity is the statement that best explains the relationship between energy and motion.
<h3>Explains the relationship between energy and motion in the process?</h3>
There is direct relationship between energy and motion in the process because if we increase the motion of the turbines, more electricity is produced in the generator and vice versa.
So we can conclude that the relationship between energy and motion in the process is directly proportional to each other.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
B. 80 m/s²
Explanation:
F = ma
a = F/m = (40 N)/(0.5 kg) = 80 m/s²
Answer:
A 3 feet radius snowball will melt in 54 hours.
Explanation:
As we can assume that the rate of snowball takes to melt is proportional to the surface area, then the rate for a 3 feet radius will be:
T= A(3 ft)/A(1 ft) * 6 hr
A is the area of the snowballs. For a spherical geometry is computing as:
A=4.pi.R^2
Then dividing the areas:
A(3 feet)/A(1 foot) = (4 pi (3 ft)^2)/(4 pi (1 ft)^2) = (36pi ft^2)/(4pi ft^2)= 9
Finally, the rate for the 3 feet radius snowball is:
T= 9 * 6 hr = 54 hr
Answer:
the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
Explanation:
Given that;
diameter D = 2.0 mm
current I = 1.0 mA
K.E of each proton is 20 MeV
the number density of the protons in the beam = ?
Now, we make use of the relation between current and drift velocity
I = MeAv ⇒ 1 / eAv
The kinetic energy of protons is given by;
K = 
v²
v = √( 2K /
)
lets relate the cross-sectional area A of the beam to its diameter D;
A =
πD²
now, we substitute for v and A
n = I /
πeD² ×√( 2K /
)
n = 4I/π eD² × √(
/ 2K )
so we plug in our values;
n = ((4×1.0 mA)/(π(1.602×10⁻¹⁹C)(2mm)²) × √(1.673×10⁻²⁷kg / 2×( 20 MeV)(1.602×10⁻¹⁹ J/ev )
n = 1.98695 × 10¹⁸ × 1.6157967 × 10⁻⁵
n = 3.2 × 10¹³ m⁻³
Therefore, the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
Answer: JOB
Explanation: They full forms of work are JOB which is JUST OBEY BOSS or Joining Other Bussiness .