Answer:
480/(x+60) ≤ 7
Step-by-step explanation:
We can use the relations ...
time = distance/speed
distance = speed×time
speed = distance/time
to write the required inequality any of several ways.
Since the problem is posed in terms of time (7 hours) and an increase in speed (x), we can write the time inequality as ...
480/(60+x) ≤ 7
Multiplying this by the denominator gives us a distance inequality:
7(60+x) ≥ 480 . . . . . . at his desired speed, Neil will go no less than 480 miles in 7 hours
Or, we can write an inequality for the increase in speed directly:
480/7 -60 ≤ x . . . . . . x is at least the difference between the speed of 480 miles in 7 hours and the speed of 60 miles per hour
___
Any of the above inequalities will give the desired value of x.
Answer:
{x, y, z} = {-4, 2, 4}
<u>i think this is the answer</u>
The answer is just do easy subtraction 3/4
Answer:
Step-by-step explanation:
If you plot these points on a coordinate plane, you see that they are on the same horizontal line, y = 7, with the focus 1 unit to the right of the vertex. This means that the parabola is a sideways opening parabola, to the right, to be more specific. That means that it has the basic vertex form

where p is the distance in units from the vertex to the focus, h is the first coordinate in the vertex, and k is the second coordinate in the vertex. For us, p = 1, h = 6, and k = 7. Now we will just fill the vertex form of the equation in with our values:

We will solve this for x now by dividing each side by 4 and adding over the 6:
