Answer:
Option A
Explanation:
A) Yes. The reaction reaches equilibrium when the rate of reaction of the reverse reaction is equal to the rate of the forward reaction , then the only cause for the reverse reaction to be favoured is that the initial rate of the reverse was greater than the forward one.
B) No. The rate constant of the reverse reaction can be greater than the forward one but the rate also depends on concentrations, thus a reverse reaction with greater rate constant can result in the net reaction proceeding in the forward reaction, the reverse reaction or be at equilibrium depending on the concentrations or reactants and products
C) No. A lower activation energy means a higher rate constant , but a higher rate constant does not mean that the net reaction will proceed to the reactants ( see point B)
D) No. The energy changes determine conditions under thermodynamic equilibrium and therefore the net direction of the reaction will depend on the temperature and concentrations of reactants and products with respect to the equilibrium conditions.
Answer:
a) pH = 4.68 (more effective)
b) pH =4.44.
Explanation:
The pH of buffer solution is obtained by Henderson Hassalbalch's equation.
The equation is:
![pH =pKa +log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3DpKa%20%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
a) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 1.4 M
[acid] = [CH₃COOH] = 1.6 M

This is more effective as there is very less difference in the concentration of salt and acid.
b) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 0.1 M
[acid] = [CH₃COOH] = 0.2 M

Answer:
The combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Explanation:
Given;
CH₄ + 2O₂ → CO₂ + 2H₂O, ΔH = -890 kJ/mol
From the combustion reaction above, it can be observed that;
1 mole of methane (CH₄) released 890 kilojoules of energy.
Now, we convert 59.7 grams of methane to moles
CH₄ = 12 + (1x4) = 16 g/mol
59.7 g of CH₄ 
1 mole of methane (CH₄) released 890 kilojoules of energy
3.73125 moles of methane (CH₄) will release ?
= 3.73125 moles x -890 kJ/mol
= -3320.81 kJ
Therefore, the combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
The answer is A! Hoped it’s sure!
Explanation: A chemical reaction involves breaking bonds in the reactants, rearranging the atoms into new groupings (the products), and forming new bonds in the products.
Hope I was able to help! Mark me brainly it would help a lot!
Answer:
mole
Explanation:
The mole in chemistry is used to represent the amount of any substance. Just like quantifying everyday things like a dozen, score, gross etc, it is a convenient unit of quantity of particles. A mole denotes 6.02 x 10²³particles of a susbstance.
Therefore, a mole is the standard unit(SI) for the amount of isopropyl alcohol in a beaker.