So if we use the equation:
→ 
We can then determine the amount of
needed to produce 208 kg of methanol.
So let's find out how many moles of methanol 208 kg is:
Methanol molar weight = 32.041g/mol
So then we can solve for moles of methanol:

So now that we have the amount of moles produced, we can use the molar ratio (from the balanced equation) of hydrogen and methanol. This ratio is 2:1 hydrogen:methanol.
Therefore, we can set up a proportion to solve for the moles of hydrogen needed:


So now that we have the number of moles of
that are produced, we can then use the molar weight of hydrogen to solve for the mass that is needed:

Therefore, the amount of diatomic hydrogen (
) that is needed to produce 208kg of methanol is
g.
Answer: 36.6°C
Explanation:
Given that,
initial pressure of helium (P1) = 1.20 atm
Initial temperature (T1) = 22.0°C
Final temperature (T2) = ?
Final pressure of helium (P2) = 2.00 atm
Since pressure and temperature are given while volume is constant, apply the formula for pressure's law
P1/T1= P2/T2
1.20 atm / 22.0°C = 2.00 atm / T2
Cross multiply
1.20 atm•T2= 2.00 atm•22°C
1.20 atm•T2= 44 atm•°C
Divide both sides by 1.20 atm
1.20 atm•T2/1.20 atm = 44 atm•°C/1.20 atm
T2 = 36.6°C
Jdjs sjaks jowow. o oooq. jaow d
Explanation:
This energy comes from the food we eat. Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose.