Explanation:
A covalent bond is formed when an element shares its valence electron with another element. This bond is formed between two non metals.
An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element and the element which accepts the electrons is known as electronegative element. This bond is formed between a metal and an non-metal.
Chlorine and potassium atoms form ionic bonds: Ionic bond is formed when there is complete transfer of electron from a highly electropositive metal to a highly electronegative non metal. Electronegativity difference = electronegativity of chlorine - electronegativity of potassium = 3-0.8 = 2.2
Carbon atoms form non-polar covalent bonds with nitrogen atoms : Non-polar covalent bond is defined as the bond which is formed when there is no difference of electronegativities between the atoms. Electronegativity difference = electronegativity of nitrogen - electronegativity of carbon= 3.0-2.5 = 0.5
Oxygen forms polar covalent bonds with phosphorus: A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms. Electronegativity difference = electronegativity of oxygen - electronegativity of phosphorous = 3.5- 2.19 = 1.31
Yes they can have origins in nature. A bunch of the elements on the periodic table are chemicals and this are basic substances and cannot be man made.
Answer:
0.054 mol O
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of carbon in a sample of acetic acid. How many moles of oxygen are in the sample?</em>
<em />
Step 1: Given data
- Chemical formula of acetic acid: CH₃CO₂H
- Moles of carbon in the sample: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula, the molar ratio of C to O is 2:2.
Step 3: Calculate the moles of oxygen in the sample
We will use the molar ratio to determine the moles of oxygen accompanying 0.054 moles of carbon.
0.054 mol C × (2 mol O/2 mol C) = 0.054 mol O
Answer:
E
Explanation:
None of the above
The atom with the symbol S is called sulphur Sulphur has atomic number 16 which means that it has 16 protons. Sulphur-32 has 32 nucleons - 16 protons and 16 neutrons.Sulfur is a chemical element It is nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula S8. Elemental sulfur is a bright yellow, crystalline solid at room temperature.
The equilibrium constant for the reaction is 0.00662
Explanation:
The balanced chemical equation is :
2NO2(g)⇌2NO(g)+O2(g
At t=t 1-2x ⇔ 2x + x moles
The ideal gas law equation will be used here
PV=nRT
here n=
=
= density
P =
density is 0.525g/L, temperature= 608.15 K, P = 0.750 atm
putting the values in reaction
0.75 = 
M = 34.61
to calculate the Kc
Kc=![\frac{ [NO] [O2]}{NO2}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BNO%5D%20%5BO2%5D%7D%7BNO2%7D)
x M NO2 +
M NO+
M O2
Putting the values as molecular weight of NO2, NO,O2

34.61= 
x= 0.33
Kc= 
putting the values in the above equation
Kc = 0.00662