Cr2(SO4)3(aq) + 3(NH4)2CO3(aq) → 3(NH4)2SO4(aq) + Cr2(CO3)3(s)
<span>Ionic: 2Cr+3 + 3SO4^-2 + 6NH4+ + 3CO3^-2 ----> 6NH4+ + 3SO4^-2 + Cr2(CO3)3 (spectator ions are NH4+, SO4^-2) </span>
<span>Net Ionic: 2Cr^+3(aq) + 3CO3^-2(aq) -------> Cr2(CO3)3(s) </span>
<h3><u>Answer;</u></h3>
A) HNO3 and NO3^-
<h3><u>Explanation;</u></h3>
- <em><u>HNO3 is a strong acid and NO3 is its conjugate base, meaning it will not have any tendency to withdraw H+ from solution.</u></em>
- Buffers are often prepared by mixing a weak acid or base with a salt of that weak acid or base.
- The buffers resist changes in pH since they contain acids to neutralize OH- and a base to neutralize H+. Acid and base can not consume each other in neutralization reaction.
Answer:
Option B. 4 moles of the gaseous product
Explanation:
Data obtained from the question include:
Initial volume (V1) = V
Initial number of mole (n1) = 2 moles
Final volume (V2) = 2V
Final number of mole (n2) =..?
Applying the Avogadro's law equation, we can obtain the number of mole of the gaseous product as follow:
V1/n1 = V2/n2
V/2 = 2V/n2
Cross multiply
V x n2 = 2 x 2V
Divide both side by V
n2 = (2 x 2V)/V
n2 = 2 x 2
n2 = 4 moles
Therefore, 4 moles of the gaseous product were produced.