Answer:
before the 0.32 in the tick is the 0.319
Step-by-step explanation:
Answer:
47.6m.
Step by step solution:
Perimeter of a triangle = base + 2 . length____(1)
Area of a triangle = 1/2 . base . diagonal
108 = 1/2 . base . 15
multiplying both sides by 2:
216 = 15 . base
dividing both sides by 15:
base = 14.4m
But the diagonal divides the triangle into two
right angle triangles each with the same length (hypotenuse),base and diagonal(height).
Taking one right angle triangle:
And using pythagoras theorem;
length² = base² + diagonal ²
length² = 7.2² + 15²
Note: Base of each right angle triangle is 7.2 which would sum up to be 14.4 the base of the full triangle.
length² = 276.84
taking the square root of both sides:
length = 16.6m
Putting the values of the base and length into equation (1).
Perimeter of the triangle = 14.4 + 2 . 16.6
Note: We are dealing with the whole triangle
now hence the base is 14.4m.
Perimeter of the triangle = 14.4 + 33.2 = 47.6m.
You can find the value of p by dividing both sides of the equation by 2. Resulting in 3.5 as the answer
Answer:
<u>Type I error: </u>D. Reject the null hypothesis that the percentage of adults who retire at age 65 is less than or equal to 62 % when it is actually true.
<u>Type II error: </u>A. Fail to reject the null hypothesis that the percentage of adults who retire at age 65 is less than or equal to 62 % when it is actually false.
Step-by-step explanation:
A type I error happens when a true null hypothesis is rejected.
A type II error happens when a false null hypothesis is failed to be rejected.
In this case, where the alternative hypothesis is that "the percentage of adults who retire at age 65 is greater than 62%", the null hypothesis will state that this percentage is not significantly greater than 62%.
A type I error would happen when the conclusion is that the percentage is greater than 62%, when in fact it is not.
A type II error would happen when there is no enough evidence to claim that the percentage is greater than 62%, even when the percentage is in fact greater than 62% (but we still don't have evidence to prove it).