In Williamson ether synthesis, the reaction begins when the hydrogen from the alcohol's hydroxyl group contacts the halogen ion. Since the iodide ion is larger than the chloride ion, there is a larger chance of collision between it and the hydrogen atom, so butyl iodide is preferred over butyl chloride.
Also, Williamson synthesis is carried out at relatively high temperatures, around 50ºC-100º C. Ethyl iodide has a boiling point of 72.2ºC, so it will be in the liquid phase. Ethyl chloride has a boiling point of 12.3ºC so it will be in the gaseous phase, which is undesirable for this.
Answer:
The forward reaction is occurring at a faster rate than the reverse reaction.
Explanation:
Reaction quotient (Q) of the given reaction is -
![Q=\frac{[NO]^{2}}{[N_{2}][O_{2}]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D)
where [NO],
and
represents concentrations of respective species at a certain time.
Here
= 0.80 M,
= 0.050 M and [NO] = 0.10 M
So, 
Hence 
It means that forward reaction is faster than reverse reaction at that point. Because then only concentration of NO is higher than concentrations of
and
which makes Q higher than K.
Answer:
the number of protons is called the atomic number
hope it helps you buddy
Answer:
P = 58.52 atm
Explanation:
Given data:
Mass of sample = 32.0 g
Pressure of sample = ?
Volume of gas = 850 cm³
Temperature of gas = 30°C
Solution:
Number of moles of gas:
Number of moles = mass/molar mass
Number of moles = 32.0 g/ 16 g/mol
Number of moles = 2 mol
Pressure of gas:
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will convert the temperature.
30+273 = 303 K
850 cm³ × 1L /1000 cm³ = 0.85 L
by putting values,
P× 0.85 L = 2 mol × 0.0821 atm.L/ mol.K × 303 K
P = 49.75 atm.L/ 0.85 L
P = 58.52 atm