Taking the average of more measurements decreases random error of measurement
Taking the average of many measurements is the most effective way to reduce random errors in a measurement. Because the certainty of the results grows as the number of data does, Less risk of random errors means that the value is more certain. Fewer measurements lead to less reliable data collection, which raises the likelihood of random errors.
The complete question is
Which procedure(s) decrease(s) the random error of a measurement: (1) taking the average of more measurements: (2) calibrating the instrument; (3) taking fewer measurements? Explain
To learn more about random errors:
brainly.com/question/14149934
#SPJ4
Answer:
he atomic size of an atom, also called the atomic radius, refers to the distance between an atom's nucleus and its valence electrons. Remember, the closer an electron is to the nucleus, the lower its energy and the more tightly it is held
Explanation:
Rb > I > Na
Rubidium have lowest ionisation energy due to larger size and less electronegativity!
Answer: No, a<span>t high pressures, volume of a real gas does not compare with the volume of an ideal gas under the same conditions.
Reason:
For an ideal gas, there should not be any intermolecular forces of interaction. However, for real gases there are intermolecular forces of interaction like dipole-dipole and dipole-induced dipole. Further, at high pressures, molecules are close by. Hence, extend of these intermolecular forces is expected to be high. This results in decreases in volume of real gas. Thus, </span>volume of a real gas does not compare with the volume of an ideal gas under the same conditions.