Answer:
The percent of callers are 37.21 who are on hold.
Step-by-step explanation:
Given:
A normally distributed data.
Mean of the data,
= 5.5 mins
Standard deviation,
= 0.4 mins
We have to find the callers percentage who are on hold between 5.4 and 5.8 mins.
Lets find z-score on each raw score.
⇒
...raw score,
=
⇒ Plugging the values.
⇒
⇒
For raw score 5.5 the z score is.
⇒
⇒
Now we have to look upon the values from Z score table and arrange them in probability terms then convert it into percentages.
We have to work with P(5.4<z<5.8).
⇒ 
⇒ 
⇒
⇒
and
.<em>..from z -score table.</em>
⇒ 
⇒
To find the percentage we have to multiply with 100.
⇒ 
⇒
%
The percent of callers who are on hold between 5.4 minutes to 5.8 minutes is 37.21
I think its 18.24 because if you multiply it by 3.14 then subtract u should get 18.24
![\bf 343^{\frac{2}{3}}+36^{\frac{1}{2}}-256^{\frac{3}{4}}\qquad \begin{cases} 343=7\cdot 7\cdot 7\\ \qquad 7^3\\ 36=6\cdot 6\\ \qquad 6^2\\ 256=4\cdot 4\cdot 4\cdot 4\\ \qquad 4^4 \end{cases}\\\\\\ (7^3)^{\frac{2}{3}}+(6^2)^{\frac{1}{2}}-(4^4)^{\frac{3}{4}} \\\\\\ \sqrt[3]{(7^3)^2}+\sqrt[2]{(6^2)^1}-\sqrt[4]{(4^4)^3}\implies \sqrt[3]{(7^2)^3}+\sqrt[2]{(6^1)^2}-\sqrt[4]{(4^3)^4} \\\\\\ 7^2+6-4^3\implies 49+6-64\implies -9](https://tex.z-dn.net/?f=%5Cbf%20343%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B36%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-256%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%5Cqquad%20%5Cbegin%7Bcases%7D%0A343%3D7%5Ccdot%207%5Ccdot%207%5C%5C%0A%5Cqquad%207%5E3%5C%5C%0A36%3D6%5Ccdot%206%5C%5C%0A%5Cqquad%206%5E2%5C%5C%0A256%3D4%5Ccdot%204%5Ccdot%204%5Ccdot%204%5C%5C%0A%5Cqquad%204%5E4%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%20%287%5E3%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B%286%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-%284%5E4%29%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B%287%5E3%29%5E2%7D%2B%5Csqrt%5B2%5D%7B%286%5E2%29%5E1%7D-%5Csqrt%5B4%5D%7B%284%5E4%29%5E3%7D%5Cimplies%20%5Csqrt%5B3%5D%7B%287%5E2%29%5E3%7D%2B%5Csqrt%5B2%5D%7B%286%5E1%29%5E2%7D-%5Csqrt%5B4%5D%7B%284%5E3%29%5E4%7D%0A%5C%5C%5C%5C%5C%5C%0A7%5E2%2B6-4%5E3%5Cimplies%2049%2B6-64%5Cimplies%20-9)
to see what you can take out of the radical, you can always do a quick "prime factoring" of the values, that way you can break it in factors to see who is what.
P = A / (1 + rt)
P = 80000 / (1 + (0.09)(0.5))
P = <span>$ 76,555.02</span>