The cost of running the lightbulb A for 30 days at 0.110 per KWh is 1.98
<h3>How to determine the energy </h3>
We'll beging by calculating the energy used by lightbulb A. This can be obtained as follow:
- Power (P) = 25 watts = 25 / 1000 = 0.025 KW
- Time (t) = 30 days = 30 × 24 = 720 h
- Energy (E) =?
E = Pt
E = 0.025 × 720
E = 18 KWh
<h3>How to determine the cost for running the bulb for 30 days</h3>
The cost of running the bulb for 30 days can be obtained as follow:
- Cost per KWh = 0.11
- Energy (E) = 18 KWh
- Cost =?
Cost = energy × Cost per KWh
Cost = 18 × 0.11
Cost = 1.98
Lean more about buying electrical energy:
brainly.com/question/16963941
#SPJ4
Answer: The minimum kinetic energy Kmin is 1.3 × 10^-13 J
Explanation: Please see the attachments below
<h3><u>Answer</u>;</h3>
$347.22
<h3><u>Explanation</u>;</h3>
Principal = $14,200
Rate = 8.5%
Time = 105 days = 105/365
Interest = Principal x Rate x Time
Interest = 14,200 x 0.085 x 105/365
Interest = 347.219
= $347.22
Answer:
Explanation:
Given that,
Number of extra electrons, n = 21749
We need to find the net charge on the metal ball. Let Q is the net charge.
We know that the charge on an electron is
To find the net charge if there are n number of extra electrons is :
Q = n × q
So, the net charge on the metal ball is
. Hence, this is the required solution.