1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
3 years ago
15

Which of these scenarios describes circular motion?

Physics
1 answer:
Anika [276]3 years ago
6 0

A)

The moon orbiting the Earth

You might be interested in
Hey everyone!
Soloha48 [4]
 8. In soft magnetic materials such as iron, what happens when an external magnetic field is removed? a. The domain alignment persists. b. The orientation of domains fluctuates. c. The material becomes a hard magnetic material. d. The orientation of domains changes, and the material returns to an unmagnetized state. 9. According to Lenz’s law, if the applied magnetic field changes, a. the induced field attempts to keep the total field strength constant. b. the induced field attempts to increase the total field strength. c. the induced field attempts to decrease the total field strength. d. the induced field attempts to oscillate about an equilibrium value. 10. The direction of the force on a current-carrying wire in an external magnetic field is a. perpendicular to the current only. b. perpendicular to the magnetic field only. c. perpendicular to the current and to the magnetic field. d. parallel to the current and to the magnetic field
6 0
3 years ago
A block of mass m sits at rest on a rough inclined ramp that makes an angle θ with the horizontal. What must be true about force
galina1969 [7]

Answer:

μ =tanθ

Explanation:=

The ratio of the force of static friction and the normal reaction is equal to tanθ. F=mgsinθ. R = mgcosθ.

μ=tanθ

6 0
3 years ago
Read 2 more answers
A 2.7-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spri
exis [7]

a) The speed of the block at a height of 0.25 m is 2.38 m/s

b) The compression of the spring is 0.25 m

c) The final height of the block is 0.54 m

Explanation:

a)

We can solve the problem by using the law of conservation of energy. In fact, the total mechanical energy (sum of kinetic+gravitational potential energy) must be conserved in absence of friction. So we can write:

U_i +K_i = U_f + K_f

where

U_i is the initial potential energy, at the top

K_i is the initial kinetic energy, at the top

U_f is the final potential energy, at halfway

K_f is the final kinetic energy, at halfway

The equation can be rewritten as

mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2

where:

m = 2.7 kg is the mass of the block

g=9.8 m/s^2 is the acceleration of gravity

h_i = 0.54 is the initial height

u = 0 is the initial speed

h_f = 0.25 m is the final height of the block

v is the final speed when the block is at a height of 0.25 m

Solving for v,

v=\sqrt{u^2+2g(h_i-h_f)}=\sqrt{0+2(9.8)(0.54-0.25)}=2.38 m/s

b)

The total mechanical energy of the block can be calculated from the initial conditions, and it is

E=K_i + U_i = 0 + mgh_i = (2.7)(9.8)(0.54)=14.3 J

At the bottom of the ramp, the gravitational potential energy has become zero (because the final heigth is zero), and all the energy has been converted into kinetic energy. However, then the block compresses the spring, and the maximum compression of the spring occurs when the block stops: at that moment, all the energy of the block has been converted into elastic potential energy of the spring. So we can write

E=E_e = \frac{1}{2}kx^2

where

k = 453 N/m is the spring constant

x is the compression of the spring

And solving for x, we find

x=\sqrt{\frac{2E}{k}}=\sqrt{\frac{2(14.3)}{453}}=0.25 m

c)

If there is no friction acting on the block, we can apply again the law of conservation of energy. This time, the initial energy is the elastic potential energy stored in the spring:

E=E_e = 14.3 J

while the final energy is the energy at the point of maximum height, where all the energy has been converted into gravitational potetial energy:

E=U_f = mg h_f

where h_f is the maximum height reached. Solving for this quantity, we find

h_f = \frac{E}{mg}=\frac{14.3}{(2.7)(9.8)}=0.54 m

which is the initial height: this is correct, because the total mechanical energy is conserved, so the block must return to its initial position.

Learn more about kinetic and potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

brainly.com/question/6536722

#LearnwithBrainly

5 0
3 years ago
The principles of magnetism apply everywhere on earth. What does this tell us about God and His character?
Bas_tet [7]

Answer:

God is omnipresent.

Explanation:

This means God is everywhere and He works where ever we are in the world

3 0
3 years ago
Which of the following describe advantages of using radio waves over other electromagnetic waves to transmit information to Eart
Whitepunk [10]

The correct options are:

D

"Radio waves have a lower frequency, which makes them safer for humans."

B

"Radio waves take less energy to produce."

<h3>Why do we radio waves over other electromagnetic waves to transmit information to Earth? </h3>

Radio waves are electromagnetic waves with frequencies on the range from 10 KHz to 10 THz.

Now, remember that all electromagnetic waves have the same speed, which is the speed of light, and the energy of a wave is proportional to its frequency.

Particularly, we can see that radio waves have small frequencies (smaller than infrared light) so these waves carry very little energy.

With that in mind, the correct options are.

D

"Radio waves have a lower frequency, which makes them safer for humans."

B

"Radio waves take less energy to produce."

These are the two main reasons of why we use radio waves.

If you want to learn more about electromagnetic waves.

brainly.com/question/14015797

#SPJ1

4 0
2 years ago
Other questions:
  • The stopping distance d of a car after the brakes are applied varies directly as the square of the speed r. If a car travelling
    10·1 answer
  • A rock falls off a cliff, its final velocity was 85m/s, how long did it fall before hitting the ground?
    8·1 answer
  • A ball of silly putty hits andsticks to a bowling ball that was initially at rest. After thecollision, the total kinetic energy
    6·1 answer
  • Which Period 2 element would you expect to have the highest electrical and
    7·1 answer
  • A diesel engine a. uses only air during the intake stroke. b. is an external-combustion engine. c. uses a spark plug to ignite f
    5·2 answers
  • A laser used for many applications of hard surface dental work emits 2780-nm wavelength pulses of variable energy (0-300 mJ) abo
    10·1 answer
  • Certain gases in the atmosphere – water vapor, carbon dioxide, methane and nitrous oxIde – help maintain the Earth’s temperature
    13·1 answer
  • A person slides a box down a ramp. The box starts from rest 2m above the lowest point. The ramp is frictionless. Once the box re
    8·1 answer
  • 17. A microphone of surface area 2.0 cm’ absorbs 1.1 mW of sound. What is the intensity
    13·1 answer
  • What is ur dream car
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!