The resultant displacement of the man is 109.77 km in the direction N60°E.
<h3>Displacement</h3>
Displacement is the distance travelled in a specified direction.
To calculate displacement, the straight line from starting point to end point of travel is taken and calculated.
<h3>Resultant displacement of the man </h3>
In the example above, a man walks 95 km, East, then 55 km, north.
The two distances form a right-angled triangle with two sides 95 and 55 units. The hypotenuse gives the resultant displacement, D.
Using Pythagoras rule:
D^2 = 95^2 + 55^2
D^2 = 12050
D = 109.77
Thus, the resultant displacement is 109.77 km
To calculate the direction:
Let the direction be y
y + x = 90°
tan x = 55/95
tanx x = 0.578
x = 30°
Then, y = 90 - 30
y = 60°
Therefore, the resultant displacement of the man is 109.77 km in the direction N60°E.
Learn more about displacement at: brainly.com/question/321442
<span>Answer:
So this involves right triangles. The height is always 100. Let the horizontal be x and the length of string be z.
So we have x2 + 1002 = z2. Now take its derivative in terms of time to get
2x(dx/dt) = 2z(dz/dt)
So at your specific moment z = 200, x = 100âš3 and dx/dt = +8
substituting, that makes dz/dt = 800âš3 / 200 or 4âš3.
Part 2
sin a = 100/z = 100 z-1 . Now take the derivative in terms of t to get
cos a (da./dt) = -100/ z2 (dz/dt)
So we know z = 200, which makes this a 30-60-90 triangle, therefore a=30 degrees or π/6 radians.
Substitute to get
cos (Ď€/6)(da/dt) = (-100/ 40000)(4âš3)
âš3 / 2 (da/dt) = -âš3 / 100
da/dt = -1/50 radians</span>
When two forces act in the same direction, they add together. ... Equal forces acting in opposite directions are called balanced forces. Balanced forces acting on an object will not change the object's motion. When you add equal forces in opposite direction, the net force is zero.
5Newtons or 5N
Ten newtons minus five Newton’s is 5 Newton’s
A)Linear motion
If there is not net force on the car, then by the Newton Second Law, the acceleration is zero, and the only valid option for zero acceleration is A).