Answer:
x = 2
Step-by-step explanation:
Both equations are equal to y, so they're also equal to each other. We then set them equal to each other:
x^2 - 2x + 1 = x^2 + 2x - 7
We now do algebra to isolate x. Subtract 1 from both sides.
x^2 - 2x = x^2 + 2x - 8
Subtract 2x from both sides.
x^2 - 4x = x^2 - 8
Subtract x^2 from both sides.
-4x = -8
Divide both sides by -4.
x = 2
The axis of symmetry of f(x) is:
On a coordinate plane, a vertical dashed line at (2, 0) is parallel to
the y-axis ⇒ 2nd answer
Step-by-step explanation:
The vertex form of a quadratic function is f(x) = a(x - h)² + k, where
- (h , k) are the coordinates of its vertex point
- The axis of symmetry of it is a vertical line passes through (h , 0)
- The minimum value of the function is y = k at x = h
∵ f(x) = a(x - h)² + k
∵ f(x) = (x - 2)² + 1
∴ a = 1 , h = 2 , k = 1
∵ The axis of symmetry of f(x) is a vertical line passes through (h , 0)
∴ The axis of symmetry of f(x) is a vertical line passes through (2 , 0)
∵ Any vertical line is parallel to y-axis
∴ The axis of symmetry of f(x) is a vertical line parallel to y-axis and
passes through (2 , 0)
The axis of symmetry of f(x) is:
On a coordinate plane, a vertical dashed line at (2, 0) is parallel to
the y-axis
Learn more:
You can learn more about quadratic function in brainly.com/question/9390381
#LearnwithBrainly
Step-by-step explanation:
Fraction = 280% / 100%
= 280/100 = 14/5 or 2 4/5.
<em>Answer</em><em>:</em>
<em>Range</em><em>=</em><em>{</em><em> </em><em>-</em><em>5</em><em>,</em><em>-</em><em>1</em><em>,</em><em>3</em><em>,</em><em>7</em><em>)</em><em>. </em><em> </em><em> </em><em> </em><em>[</em><em> </em><em>option</em><em> </em><em>C</em><em>]</em>
<em>Please</em><em> </em><em>see</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>for</em><em> </em><em>full</em><em> </em><em>sol</em><em>ution</em><em>.</em><em>.</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em><em>.</em><em>.</em>