1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
12

Jovan has $14,000 in a savings account. The savings collect interest at a 7% annual rate that compounds every year. How much mon

ey will be in Jovan's account after 4 years?
Mathematics
1 answer:
wel3 years ago
8 0

Answer:

sorry 98928

Step-by-step explanation:

You might be interested in
Can somebody please help me with this question?
meriva
What, this is math right?

7 0
3 years ago
how for is Blaine's house if you must drive 6.5 hours through the woods at an average of 45mph to get there?
omeli [17]
Six and a half hours at a speed of 45 mph. 45 mph is forty five miles per hour. since there are six full hours, multiply six (time) by speed (45) to get the distance within the six full hours, which is 270 miles. you also have an additional half hour at a 45 mph speed, so rather than going 45 miles in one hour, you for half an hour, meaning you go 22.5 miles. add these two together (270 + 22.5) to get 292.5 miles. a faster way to get to this would be to multiply 6.5 * 45. hole this helps!
3 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Mai's water bottle had 24 ounces in it. After she drank x ounces of water, there were 10 ounces left.
nirvana33 [79]

Answer:

24 - X = 10

Step-by-step explanation:

Given that Mai's water bottle had 24 ounces in it. After she drank x ounces of water, there were 10 ounces left, in order to determine the equation that represents this situation, the following reasoning has to be made:

Since the bottle has 24 ounces of liquid, that is its initial content, from which an amount X is subtracted, after which 10 ounces of water remain. That is, 24 - X = 10.

Thus, this equation is solved in the following way:

24 - X = 10

24 = 10 + X

24 - 10 = X

14 = X

8 0
3 years ago
Please help!!! (will give brainlest to correct answer!)
ch4aika [34]

Answer:

789.6

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • PLEASE ANSWER ASAP,
    8·1 answer
  • the altitude of the hypotenuse of a right triangle divides the hypotenuse into segments of lengths 14 and 8. what is the length
    14·1 answer
  • WILL GIVE BRAINLIST PLS HELP ME
    9·1 answer
  • How many flowers spaced every 6in are needed to surround a crcular garden with a 125ft radius?use 3.14 for pi
    14·1 answer
  • Solve for x. 9x=5x 20 enter your answer in the box. x =
    12·2 answers
  • 4(5c+3) and 9c+7 is it equivilent
    10·2 answers
  • Andreas patio is composed of a rectangle and a semi circle as shown in the figure below which is the best estimate of the area o
    14·1 answer
  • The GCF these monomials <br>1- {10,15,75} <br>2-{20ay,4aw,12a} help pls.....​
    13·1 answer
  • I AM Confused on what to even do pls help
    15·1 answer
  • A portion of the Quadratic Formula proof is shown. Fill in the missing statement
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!