<span>5 1/4 + x + 6 5/6 + 4 2/3 = 22 1/6
5 3/12 + x + 6 10/12 + 4 8/12 = 22 2/12
15 21/12 + x = 22 2/13
</span>16 9/12<span> + x = 22 2/12
x = 22 2/12 - </span>16 9/12<span>
x = </span>21 14/12 - 16 9/12
x = 5 5/12
answer is <span>A. 5 5/12</span>
Answer:
4x² - 6x
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
(3x² + 2y² - 3x) + (2x² + y² - 2x) - (x² + 3y² + x)
<u>Step 2: Simplify</u>
- [Distributive Property] Distribute negative: 3x² + 2y² - 3x + 2x² + y² - 2x - x² - 3y² - x
- Combine like terms (x²): 4x² + 2y² - 3x + y² - 2x - 3y² - x
- Combine like terms (y²): 4x² - 3x - 2x - x
- Combine like terms (x): 4x² - 6x
Answer:

Step-by-step explanation:
- given ap series : 8,3,-2,-7,-12....up to n terms
[the second term should be +3 or else it wont form AP series]
first term in the series: 8
common difference : 3-8 = -5
total terms : n
- the formula for sum of n terms in an ap =
![\frac{n}{2} [2a+(n-1)d]](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%20%5B2a%2B%28n-1%29d%5D)
a: first term
d: common difference
n : total terms
- by substituting value in the above formula,
- sum of the A.P:
![\frac{n}{2} [2(8)+(n-1)-5]](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%20%5B2%288%29%2B%28n-1%29-5%5D)
![\frac{n}{2} [16+(n-1)(-5)]](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%20%5B16%2B%28n-1%29%28-5%29%5D)
![\frac{n}{2} [16+(n-1)(-5)]](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%20%5B16%2B%28n-1%29%28-5%29%5D)
![\frac{n}{2} [16+-5n+5]](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%20%5B16%2B-5n%2B5%5D)
![\frac{n}{2} [21+-5n]](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%20%5B21%2B-5n%5D)
=