Answer:
Step-by-step explanation:
Answer:
The approximated length of the cables that stretch between the tops of the two towers is 1245.25 meters.
Step-by-step explanation:
The equation of the parabola is:

Compute the first order derivative of <em>y</em> as follows:

![\frac{\text{d}y}{\text{dx}}=\frac{\text{d}}{\text{dx}}[0.00035x^{2}]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7Bd%7Dy%7D%7B%5Ctext%7Bdx%7D%7D%3D%5Cfrac%7B%5Ctext%7Bd%7D%7D%7B%5Ctext%7Bdx%7D%7D%5B0.00035x%5E%7B2%7D%5D)

Now, it is provided that |<em>x </em>| ≤ 605.
⇒ -605 ≤ <em>x</em> ≤ 605
Compute the arc length as follows:


Now, let



Plug in the solved integrals in Arc Length and solve as follows:


Thus, the approximated length of the cables that stretch between the tops of the two towers is 1245.25 meters.
I think it’s c sorry if it’s wrong
Answer = -3/2
Explanation:
Slope = rise/run
Rise = vertical
Run= horizontal
The slope is negative because it goes from right to left.
Answer:

Step-by-step explanation:
In order to solve this problem we must start by graphing the given function and finding the differential area we will use to set our integral up. (See attached picture).
The formula we will use for this problem is the following:

where:


a=0

so the volume becomes:

This can be simplified to:

and the integral can be rewritten like this:

which is a standard integral so we solve it to:
![V=9\pi[tan y]\limits^\frac{\pi}{3}_0](https://tex.z-dn.net/?f=V%3D9%5Cpi%5Btan%20y%5D%5Climits%5E%5Cfrac%7B%5Cpi%7D%7B3%7D_0)
so we get:
![V=9\pi[tan \frac{\pi}{3} - tan 0]](https://tex.z-dn.net/?f=V%3D9%5Cpi%5Btan%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20-%20tan%200%5D)
which yields:
]