1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
3 years ago
13

Is this true or false?

Physics
2 answers:
Aneli [31]3 years ago
8 0

Answer:

true

Explanation:

I have the same quiz question on k12

I don't know if I got it right or not please tell me if I got it right and thankyou

Butoxors [25]3 years ago
4 0

Answer:

it is true

Explanation:

You might be interested in
What is the uncertainty of the position of the bacterium? express your answer with the appropriate units?
lbvjy [14]
For two un-related quantities, the Heisenberg uncertainty equations holds: the prduct of the two uncertainty quantities is greater than \hbar/2
Example of unrelated quantities are position and momentum, energy and time. 
Thus
\Delta x*\Delta p  \ \textgreater \ \hbar/2
Knowing the speed of the bacteria the uncertainty in its position is
\Delta x \ \textgreater \ \hbar/(2 \Delta p) =\hbar/(2mv)
4 0
3 years ago
To understand how to find the velocities of objects after a collision.
trasher [3.6K]

There are some information missing on Part D: Let the mass of object 1 be m and the mass of object 2 be 3m. If the collision is perfectly inelastic, what are the velocities of the two objects after the collision? Give the velocity v_1 of object one, followed by object v_2 of object two, separated by a comma. Express each velocity in terms of v.

Answer: Part A: v_1 = 0; v_2 = v

Part B: v_1 = v_2 = \frac{v}{2}

Part C: v_1 = \frac{v}{3}; v_2 = \frac{4v}{3}

Part D: v_1 = v_2 = \frac{v}{4}

Explanation: In elastic collisions, there no loss of kinetic energy and momentum is conserved. Momentum is determined as p = m.v and kinetic energy as K = \frac{1}{2}m.v^{2}

Conserved means that the amount of initial momentum is equal to the amount of final momentum:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

No loss of energy means that initial kinietc energy is the same as the final kinetic energy:

\frac{1}{2}(m_{1}.v_{1i} + m_{2}.v_{2i}) = \frac{1}{2} (m_{1}.v_{1f} + m_{2}.v_{2f}  )

To determine the final velocities of each object, there are 2 variables and two equations, so working those equations, the result is:

v_{2f} = \frac{2.m_{1} } {m_{1} + m_{2} }.v_{1i}  + \frac{(m_{2} - m_{1})}{m_{1} + m_{2} } . v_{2i}

v_{1f} = \frac{m_{2} - m_{1} }{m_{1} + m_{2} } . v_{1i} + \frac{2.m_{2} }{m_{1} + m_{2} } .v_{2i}

For all the collisions, object 2 is static, i.e. v_{2i} = 0

<u>Part A</u>: Both objects have the same mass (m), v_{1i} = v and collision is elastic:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = 0

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.m}{m+m}.v

v_2 = v

When the masses are the same and there is an object at rest, the object in movement stops and the object at rest has the same same velocity as the object who hit it.

<u>Part B</u>: Same mass but collision is inelastic: An inelastic collision means that after it happens, the two objects has the same final velocity, then:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

m_{1}.v_{1i} = (m_{1}+m_{2}).v_{f}

v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m.v}{m+m}

v_1 = v_2 = \frac{v}{2}

<u>Part C:</u> Object 1 is 2m, object 2 is m and elastic collision:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = \frac{2m - m}{2m + m } . v

v_1 = \frac{v}{3}

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.2m}{2m+m}.v

v_2 = \frac{4v}{3}

<u>Part D</u>: Object 1 is m, object is 3m and collision is inelastic:

v_1 = v_2 = v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m}{m+3m}.v

v_1 = v_2 = \frac{v}{4}

5 0
4 years ago
Rod A and rod B are cylindrical rods made of the same metal. amd they differ only in size. Rod B has double the length and doubl
Mice21 [21]

Answer:

it would take rod B twice as much time

Explanation:

it would take rod B twice as much time as it is twice as thick and twice as long. Due to this reason it would take the electric charge not only more time but even more voltage to travel through the rod

5 0
3 years ago
The density of atmosphere (measured in kilograms/meter3) on a certain planet is found to decrease as altitude increases (as meas
alexgriva [62]

Answer:

B.  inverse plot, 0.51 kilograms/meter3

Explanation:

First of all, we note that the relationship between the altitude and the atmospheric density is an inverse relationship. In fact, an inverse relationship is a relationship between the x-variable and the y-variable of the form

y \propto \frac{1}{x}

Therefore, as the x increases, the y decreases, and as the x decreases, they increases. This is exactly what occurs with the altitude and the atmospheric density in this plot: as the altitude increases, the density decreases, and vice-versa.

Moreover, we can infer the value of the atmospheric density at an altitude of 1,291 km. This point is located between point A (2550 km) and point B(1000 km), so the density must have a value between 0.30 kg/m^3 and 0.54 kg/m^3, so the correct choice is

B.  inverse plot, 0.51 kilograms/meter3


5 0
3 years ago
At what displacement of a sho is the energy half kinetic and half potential? what fraction of the total energy of a sho is kinet
expeople1 [14]

As we know that KE and PE is same at a given position

so we will have as a function of position given as

KE = \frac{1}{2}m\omega^2(A^2 - x^2)

also the PE is given as function of position as

PE = \frac{1}{2}m\omega^2x^2

now it is given that

KE = PE

now we will have

\frac{1}{2}m\omega^2(A^2 - x^2) = \frac{1}{2}m\omega^2x^2

A^2 - x^2 = x^2

2x^2 = A^2

x = \frac{A}{\sqrt2}

so the position is 0.707 times of amplitude when KE and PE will be same

Part b)

KE of SHO at x = A/3

we can use the formula

KE = \frac{1}{2}m\omega^2(A^2 - x^2)

now to find the fraction of kinetic energy

f = \frac{KE}{TE} = \frac{A^2 - x^2}{A^2}

f = \frac{A^2 - (\frac{A}{3})^2}{A^2}

f_k = \frac{8}{9}

now since total energy is sum of KE and PE

so fraction of PE at the same position will be

f_{PE} = 1 - f_k

f_{PE} = 1 - (8/9) = 1/9

7 0
3 years ago
Other questions:
  • When a tuning fork vibrates over an open pipe and the air in the pipe starts to vibrate, the vibrations in the tube are caused b
    6·2 answers
  • The total resistance of a circuit is 25. The voltage drop across the battery is 6.0v. What is the current
    5·2 answers
  • A hoop of mass 2 kg, radius 0.5 m is rotating about its center with an angular speed of 3 rad's. A force of 10N is applied tange
    8·1 answer
  • A car traveling 91 km/h is 280 m behind a truck traveling 76 km/h.
    13·1 answer
  • A block of ice is sliding down a ramp of slope 45° to the horizontal. At the bottom of the ramp, the block strikes a wall with a
    10·1 answer
  • Heat transfers through Earth's systems in different ways. In which atmospheric action can we see evidence of conduction? Cold ai
    13·1 answer
  • A person finds it easier to lift an anchor through the water than lift it into the boat through the air. Why?
    12·1 answer
  • Cold water flows to the solar panels at 15°C. During the day, the panels supply 3.8 kg of hot water
    14·1 answer
  • No links plz!!
    14·1 answer
  • Does the response of the light bulb depend on how fast you move the bar magnet? if so, how?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!