Energy is released in the reaction
Explanation:
In a given where the energy of the products is greater than that of the reactants, we can infer that energy is released in the reaction.
This indicates that the reaction is an exothermic or exergonic reaction.
These reaction types are accompanied by release of energy.
- In an exothermic change energy is released to the surroundings.
- The surrounding becomes hotter at the end of the change.
- This applies in exergonic reaction which leaves a reaction having more energy than it originally started with.
Learn more:
Exothermic process brainly.com/question/10567109
#learnwithBrainly
The solution would be like
this for this specific problem:
<span>5.5 g = g + v^2/r </span><span>
<span>4.5 g =
v^2/r </span>
<span>v^2 = 4.5
g * r </span>
<span>v = sqrt
( 4.5 *9.81m/s^2 * 350 m) </span>
v = 124
m/s</span>
So the pilot will black out for this dive at 124
m/s. I am hoping that these answers have satisfied your query and it
will be able to help you in your endeavors, and if you would like, feel free to
ask another question.
Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
,
- Initial and final momemtums of the small object, measured in kilogram-meters per second.
,
- Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that
,
and
, then the final momentum of the big object is:


The magnitude of the large object's momentum change is:


The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Answer:
We begin by solving the equation P = hρg for depth h: h=Pρg h = P ρ g . Then we take P to be 1.00 atm and ρ to be the density of the water that creates the pressure.