1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
4 years ago
12

Helpppp!!! Can somebody give me 2 problems and solve them so I can do this assignment so I can pass , has to be before 12!!

Mathematics
1 answer:
tensa zangetsu [6.8K]4 years ago
6 0

3(2x+5)=3

3 • 2x] + [3 • 5] = 3 

6x + 15 = 3 

6x = –12 

x = –2

2x – 2(3x – 2) = 2(x –2) + 20

2x – 2(3x – 2) = 2(x –2) + 20

2x – 6x + 4 = 2x – 4 + 20 

– 4x + 4 = 2x + 16 

–4x + 4 – 4 –2x = 2x + 16 – 4 -2x

–6x = 12 

x = –2

You might be interested in
Select all the irrational numbers.<br> 1<br> 16<br> 2<br> V35<br> 7T<br> 0.54
Natali5045456 [20]

Answer:

\sqrt{35}, \pi, and 0.54

Step-by-step explanation:

3 0
3 years ago
Please help me solve this problem!<br><br><br> 3√ 5 (2√ 3 + 1) ^ 2
marissa [1.9K]

133.682451277 would be your answer in decimals

8 0
1 year ago
Read 2 more answers
The thickness X of aluminum sheets is distributed according to the probability density function f(x) = 450 (x2 - x) if 6 &lt; x
grandymaker [24]

Solution :

Given :

f(x) = \left\{\begin{matrix}\frac{1}{450}(x^2-x) & \text{if  } 6 < x < 12 \\ 0 & \text{otherwise}\end{matrix}\right.

1. Cumulative distribution function

$P(X \leq x) = \int_{- \infty}^x f(x) \ dx$

              $=\int_{- \infty}^6 f(x) dx + \int_{6}^x f(x) dx $

             $=0+\int_6^x \frac{1}{450}(x^2-x) \ dx$

             $=\frac{1}{450} \int_6^x (x^2-x) \ dx$

             $=\frac{1}{450}\left[\frac{x^3}{3}-\frac{x^2}{2}\right]_6^x$

             $=\frac{1}{450}\left[ \left( \frac{x^3}{3} - \frac{x^2}{2}\left) - \left( \frac{6^3}{3} - \frac{6^2}{2} \right) \right]  $

            $=\frac{1}{450}\left[\frac{x^3}{3} - \frac{x^2}{2} - 54 \right]$

2.  Mean $E(x) = \int_{- \infty}^{\infty} \ x \ f(x) \ dx$

                       $=\int_{6}^{12}x . \left( \frac{1}{450} \ (x^2-x)\right)\  dx$

                     $=\frac{1}{450} \int_6^{12} \ (x^3 - x^2) \ dx$

                     $=\frac{1}{450} \left[\frac{x^4}{4} - \frac{x^3}{3} \right]_6^{12} \ dx$

                     $=\frac{1}{450} \left[ \left(\frac{(12)^4}{4} - \frac{(12)^3}{3} \right) -  \left(\frac{(6)^4}{4} - \frac{(6)^3}{3} \right) $

                     $=\frac{1}{450} [4608 - 252]$

                    = 17.2857

5 0
3 years ago
You give me answer=BRAINLIEST
mamaluj [8]

Answer:

A. 2

Step-by-step explanation:

Well let’s first graph the following,

x^2 + y = 8

x=y

So on the graph the system of equations only have 2 real solutions which are

(-3.272, -3.272) (2.372,2.372)

3 0
3 years ago
The original blueprint of a concrete patio has a scale of 2 inches = 3 feet.
lyudmila [28]

Answer:

Scale of the new blueprint: 2 inches = 2.5 feet (or 4 inches = 5 feet)

Width of the new blueprint: 14.4 inches

Step-by-step explanation:

To solve this problem we can use rules of three to find each of the questions: blueprint's new scale and new width.

To find the new scale, we can find the real length of the patio first:

2 inches -> 3 feet

14 inches -> X feet

2/14 = 3/X

X = 21 feet

Now we can use this value to create the new scale:

16.8 inches -> 21 feet

2 inches -> X feet

16.8/2 = 21/X

X = 2*21/16.8 = 2.5 feet

So the new scale is 2 inches = 2.5 feet, or 4 inches = 5 feet

Now, to find the new width of the blueprint, we can do the following rule of three:

14 inches of length -> 16.8 inches of length

12 inches of width -> X inches of width

14/12 = 16.8/X

X = 12*16.8/14 = 14.4 inches

5 0
4 years ago
Read 2 more answers
Other questions:
  • If f(x)=4x+5, what is the value of f(-3)
    8·1 answer
  • A spherical tank has a radius of 27 inches. find the volume of the tank in
    15·1 answer
  • Sam correctly answered 80% of the questions on his last math test if he missed 3 problems how many questions were on the test
    6·1 answer
  • Jill and Erika made 4 gallons of lemonade for their lemonade stand. How many quarts did they make if then charge $2:00 per quart
    15·1 answer
  • Which describes a uniform probability model?
    9·1 answer
  • In the trinomial 
    12·1 answer
  • Solve the system of linear operations
    6·1 answer
  • -1 80/99 needs to get to a decimal
    12·1 answer
  • Alternate exterior angles are congruent.
    14·1 answer
  • I need help pls and thank you...
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!