<span>Helena is correct in saying that the point-slope form
will generate the equation. The point-slope form is written as:</span>
<span>
</span>
y-y₁ = m(x-x₁), where,
m = (y₂-y₁)/(x₂-x₁) is the slope of the line
(x₁,y₁) and (x₂,y₂) are the coordinates of the two points
On the other hand, the slope-intercept form is written as:
y = mx + b, where,
m is the slope of the line
b is the y-intercept
In this case, since only two points were given, the y-intercept of the line is not readily known. Thus, it is only through the point-slope form that the equation of the line can be determined. This is because it only requires the substitution of the x and y-coordinates of the points in the equation.
The perpendicular line would have a slope of 1/3.
Perpendicular lines have opposite and reciprocal slopes. So first we have to find the slope of the original line. We can do this by solving the equation for y.
5x - 9y = 1
-9y = -5x + 1
y = 5/9x - 1/9
To do the opposite, take the original slope (5/9) and change the sign (-5/9).
To do the reciprocal, take the slope we changed (-5/9) and flip it as a fraction (-9/5).
This gives us a new slope of
Answer:
77,786.251
Step-by-step explanation:
Using the normal distribution, we have that:
- The distribution of X is
.
- The distribution of
is
.
- 0.0597 = 5.97% probability that a single movie production cost is between 55 and 58 million dollars.
- 0.2233 = 22.33% probability that the average production cost of 17 movies is between 55 and 58 million dollars. Since the sample size is less than 30, assumption of normality is necessary.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem, the parameters are given as follows:

Hence:
- The distribution of X is
.
- The distribution of
is
.
The probabilities are the <u>p-value of Z when X = 58 subtracted by the p-value of Z when X = 55</u>, hence, for a single movie:
X = 58:


Z = 0.05.
Z = 0.05 has a p-value of 0.5199.
X = 55:


Z = -0.1.
Z = -0.1 has a p-value of 0.4602.
0.5199 - 0.4602 = 0.0597 = 5.97% probability that a single movie production cost is between 55 and 58 million dollars.
For the sample of 17 movies, we have that:
X = 58:


Z = 0.19.
Z = 0.19 has a p-value of 0.5753.
X = 55:


Z = -0.38.
Z = -0.38 has a p-value of 0.3520.
0.5753 - 0.3520 = 0.2233 = 22.33% probability that the average production cost of 17 movies is between 55 and 58 million dollars. Since the sample size is less than 30, assumption of normality is necessary.
More can be learned about the normal distribution at brainly.com/question/4079902
#SPJ1
Answer:
<h2>3.6°</h2>
Step-by-step explanation:
The question is incomplete. Here is the complete question.
Find the angle between the given vectors to the nearest tenth of a degree.
u = <8, 7>, v = <9, 7>
we will be using the formula below to calculate the angle between the two vectors;

is the angle between the two vectors.
u = 8i + 7j and v = 9i+7j
u*v = (8i + 7j )*(9i + 7j )
u*v = 8(9) + 7(7)
u*v = 72+49
u*v = 121
|u| = √8²+7²
|u| = √64+49
|u| = √113
|v| = √9²+7²
|v| = √81+49
|v| = √130
Substituting the values into the formula;
121= √113*√130 cos θ
cos θ = 121/121.20
cos θ = 0.998
θ = cos⁻¹0.998
θ = 3.6° (to nearest tenth)
Hence, the angle between the given vectors is 3.6°