Offspring are more rapidly reproduced
The pH a 0.25 m solution of C₆H₅NH₂ is equal to 3.13.
<h3>How do we calculate pH of weak base?</h3>
pH of the weak base will be calculate by using the Henderson Hasselbalch equation as:
pH = pKb + log([HB⁺]/[B])
pKb = -log(1.8×10⁻⁶) = 5.7
Chemical reaction for C₆H₅NH₂ is:
C₆H₅NH₂ + H₂O → C₆H₅NH₃⁺ + OH⁻
Initial: 0.25 0 0
Change: -x x x
Equilibrium: 0.25-x x x
Base dissociation constant will be calculated as:
Kb = [C₆H₅NH₃⁺][OH⁻] / [C₆H₅NH₂]
Kb = x² / 0.25 - x
x is very small as compared to 0.25, so we neglect x from that term and by putting value of Kb, then the equation becomes:
1.8×10⁻⁶ = x² / 0.25
x² = (1.8×10⁻⁶)(0.25)
x = 0.67×10⁻³ M = [C₆H₅NH₃⁺]
On putting all these values on the above equation of pH, we get
pH = 5.7 + log(0.67×10⁻³/0.25)
pH = 3.13
Hence pH of the solution is 3.13.
To know more about Henderson Hasselbalch equation, visit the below link:
brainly.com/question/13651361
#SPJ4
To calculate the average mass of the element, we take the summation of the product of the isotope and the percent abundance. In this case, the equation becomes 186.207=187*0.626+185*x where x is the percent abundance of 185. The answer is 0.374 or 37.4%. This can also be obtained by 100%-62.6%= 37.4%.
A eukaryotic cell goes through nuclear division creating two identical daughter cells.
The chemical equation represents the reaction describes is;
4NH3 + 5O2 = 4NO + 6H2O
Therefore 4 moles of NH3 reacts with 5 moles of O2.
1 mole of O2 (molar mass) = 2 * 16 = 32g.
5 moles of O2 = 5 * 32 = 160g
4 moles of NH3 = 4 (14 + 3*1) = 68g
Therefore, 68g of NH3 reacts with 160g of O2.
But, we have only 4.5 g of oxygen.
68g reacts with 160g
Xg reacts with 4.5
X = 68*4.5 / 160 = 1.9125g