Answer: 31.6ft
Explanation:
Check the attachment for the diagram.
According to the right angle triangle AEC, we will use Pythagoras theorem to get |AC|. Note that |AE| = |AB| - |CD|
that is 20ft - 10ft = 10ft
According to the theorem, the square of the sum of the adjacent side and the opposite side is equal to the square of the hypotenuse.
|AE|^2 + |EC|^2 = |AC|^2
10^2 + 30^2 = |AC|^2
100 + 900 = |AC|^2
|AC| = √1000
|AC| = 31.6ft
Therefore, the wire should be anchored 31.6ft to the ground to minimize the amount of wire needed.
<h3>I hope it is helpful for you ...</h3>
Answer:
0.694 m
Explanation:
Case 1 : When only mass of 2.82 kg is hanged from spring
m = mass hanged from the spring = 2.82 kg
x = stretch caused in the spring = 0.331 m
k = spring constant
Using equilibrium of force in vertical direction
Spring force = weight of the mass
k x = m g
k (0.331) = (2.82) (9.8)
k = 83.5 N/m
Case 2 : When both masses are hanged from spring
m = mass hanged from the spring = 3.09 + 2.82 = 5.91 kg
x = stretch caused in the spring = ?
k = spring constant = 83.5 N/m
Using equilibrium of force in vertical direction
Spring force = weight of the mass
k x = m g
(83.5) x = (5.91) (9.8)
x = 0.694 m
1/2 the wavelength.......