Answer:
volume = ⅓×π×4²×9 = 48π sq. meters
Answer:
The number of hours Jackie worked = 80hours
Step-by-step explanation:
Last summer:
Jackie made $960
Rachel made $960
let number of hours Jackie worked = x
Rachel worked 16 hours more than Jackie:
Number of hours Rachel worked = x + 16
if Jackie earned $y per hour
Rachel earned $2 less per hour = y-2
Jackie: 960 = x × y = xy
Rachel: 960 = (x+16)(y-2)
960 = xy -2x +16y -32
recall xy = 960, insert the value for xy
960 = 960 - 2x +16y -32
- 2x +16y -32 = 0
2x -16y = -32
x-8y = -16
x = 8y-16
recall xy = 960, insert the expression for x
(8y-16)y = 960
8y² -16y = 960
y² -2y - 120 = 0
y²+10y-12y -120 = 0
y(y+10) -12(y+10) = 0
(y-12) = 0 or (y+10) = 0
y = 12 or -10
since y can't be negative, y = 12
x = 8y-16
x = 8(12) -16 = 80
The number of hours Jackie worked = x = 80 hours
Answer:ACTUAL
Step-by-step explanation:
tis a little of plain differentiation.
we know the radius of the cone is decreasing at 10 mtr/mins, or namely dr/dt = -10, decreasing, meaning is negative.
we know the volume is decreasing at a rate of 1346 mtr/mins or namely dV/dt = -1346, also negative.
so, when h = 9 and V = 307, what is dh/dt in essence.
we'll be needing the "r" value at that instant, so let's get it

now let's get the derivative of the volume of the cone
![V=\cfrac{1}{3}\pi r^2 h\implies \cfrac{dV}{dt}=\cfrac{\pi }{3}\stackrel{product~rule}{ \left[ \underset{chain~rule}{2r\cdot \cfrac{dr}{dt}}\cdot h+r^2\cdot \cfrac{dh}{dt} \right]} \\\\\\ -1346=\cfrac{\pi }{3}\left[2\sqrt{\cfrac{307}{3\pi }}(-10)(9)~~+ ~~ \cfrac{307}{3\pi } \cdot \cfrac{dh}{dt}\right]](https://tex.z-dn.net/?f=V%3D%5Ccfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2%20h%5Cimplies%20%5Ccfrac%7BdV%7D%7Bdt%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B3%7D%5Cstackrel%7Bproduct~rule%7D%7B%20%5Cleft%5B%20%5Cunderset%7Bchain~rule%7D%7B2r%5Ccdot%20%5Ccfrac%7Bdr%7D%7Bdt%7D%7D%5Ccdot%20h%2Br%5E2%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%20%5Cright%5D%7D%20%5C%5C%5C%5C%5C%5C%20-1346%3D%5Ccfrac%7B%5Cpi%20%7D%7B3%7D%5Cleft%5B2%5Csqrt%7B%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%7D%28-10%29%289%29~~%2B%20~~%20%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%20%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cright%5D)
![-\cfrac{4038}{\pi }=-\cfrac{180\sqrt{307}}{\sqrt{3\pi }}+\cfrac{307}{3\pi } \cdot \cfrac{dh}{dt}\implies \left[ -\cfrac{4038}{\pi }+\cfrac{180\sqrt{307}}{\sqrt{3\pi }} \right]\cfrac{3\pi }{307}=\cfrac{dh}{dt} \\\\\\ -\cfrac{12114}{307}+\cfrac{180\sqrt{3\pi }}{\sqrt{307}}=\cfrac{dh}{dt}\implies -7.920939735970634 \approx \cfrac{dh}{dt}](https://tex.z-dn.net/?f=-%5Ccfrac%7B4038%7D%7B%5Cpi%20%7D%3D-%5Ccfrac%7B180%5Csqrt%7B307%7D%7D%7B%5Csqrt%7B3%5Cpi%20%7D%7D%2B%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%20%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cimplies%20%5Cleft%5B%20-%5Ccfrac%7B4038%7D%7B%5Cpi%20%7D%2B%5Ccfrac%7B180%5Csqrt%7B307%7D%7D%7B%5Csqrt%7B3%5Cpi%20%7D%7D%20%5Cright%5D%5Ccfrac%7B3%5Cpi%20%7D%7B307%7D%3D%5Ccfrac%7Bdh%7D%7Bdt%7D%20%5C%5C%5C%5C%5C%5C%20-%5Ccfrac%7B12114%7D%7B307%7D%2B%5Ccfrac%7B180%5Csqrt%7B3%5Cpi%20%7D%7D%7B%5Csqrt%7B307%7D%7D%3D%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cimplies%20-7.920939735970634%20%5Capprox%20%5Ccfrac%7Bdh%7D%7Bdt%7D)