Answer:
He developed the concept of concentric electron energy levels
Explanation:
Before Bohr's model, Rutherford's model was proposed. This model explains most of the properties of the atom but failed to explain the stability of the atom.
As per Rutherford's model, electrons revolve around the nucleus in the orbit.
But revolving electron in their orbit around nucleus would give up energy and so gradually move towards the nucleus and therefore, eventually collapse.
Bohr's proposed that the electrons around the nucleus move orbit of fixed energy called "stationary states". Electrons in these stationary states do not radiate energy.
Therefore, proposal of concentric electron energy levels refine the atomic models.
Explanation:
Some Rules Regarding Oxidation Numbers:
- Hydrogen has oxidation number of + 1 except in hydrides where it is -1
- Oxygen has oxidation number of -2 except in peroxides where it is -1
- Some elements have fixed oxidation numbers. E.g Halogen group elements has oxidation number of -1
- Oxidation number of a compound is the sum total of the individual elements and a neutral compound has oxidation number of 0.
A. HI
Hydrogen has oxidation of + 1
Oxidation number of I:
1 + x = 0
x = -1
B. PBr3
Br has oxidation number of - 1
Oxidation number of Pb:
x + 3 (-1) = 0
x = + 3
C. KH
Hydrogen has oxidation of + 1
Oxidation number of K:
1 + x = 0
x = -1
D. H3PO4
Hydrogen has oxidation number of + 1
Oxygen has oxidation number of -2
Oxidation number of P:
3(1) + x + 4(-2) = 0
3 + x - 8 =0
x = 5
Answer:
14.68 oz
Explanation:
The mean volume is the average volume of all the regular soda cans put together; 14.5 oz. The standard deviation 0.18 oz is the maximum deviation from the mean. It can be 14.5-0.18= 14.32 oz which is the usual minimum or 14.5 + 0.18=14.68 oz which is the usual maximum
Answer:
C.
Explanation:
The sun is directly overhead at noon on the equator on the first day of spring, and on the first day of fall. You would have to be less than 23.5 degrees above or below the equator to have the Sun pass directly overhead. Therefore, it never occurs in the continental US.
I will present a simple reaction so we can do this conversion:
2H₂ + O₂ → 2H₂O
We will assume we have 32 g of O₂ and we want to find the amount of water, assuming this reaction goes to completion. We must first convert the initial mass to moles, which we do using the molar mass in units of g/mol. The molar mass of O₂ is 32 g/mol.
32 g O₂ ÷ 32 g/mol = 1 mole O₂.
Now that we have moles of oxygen, we use the molar coefficients to find the ratio of water molecules to oxygen molecules. We can see there are 2 moles of water for every 1 mole of oxygen.
1 moles O₂ x (2 mol H₂O/ 1 mol O₂) = 2 moles H₂O
Now that we have the moles of water, we can convert this amount into grams using the molar mass of water, which is 18 g/mol.
2 moles H₂O x 18 g/mol = 36 g H₂O
Now we have successfully converted the mass of one molecule to the mass of another.