From the relative atomic mass of each element, it is possible to determine each element's molar mass by multiplying the molar mass constant (1 g/mol) by the atomic weight of that particular element. The molar mass value can be used as a conversion factor to facilitate mass-to-mole and mole-to-mass conversions.
Answer:
= 74.4 grams / mole. Ernest Z. The reaction will produce 15.3 g of KCl
Explanation:
The balanced equation of the reaction is:
O3(g) + NO (g) → O2 (g) + NO2 (g)
Then the ratios of reaction is 1 mol O3 : 1 mol NO : 1 mol O2 : 1 mol NO2
If you have initially 0.05 M of O3 and 0.02 M of NO, the reaction will end when all the NO is consumed.
The by the stoichiometry 0.02 mol of O3 will be consumed in 8 seconds.
And the rate of reaction is change in concetration divided by the time.
The change in concentration in O3 is 0.02 M
Then, the rate respect O3 is 0.02 M / 8 seconds = 0.0025 M/s
Answer:
C. NaHCO3 → Na2CO3 + H2O + CO2
Explanation:
» For a balanced equation, the number of atoms of reactants and products must be equal.
» In equation C, the reactant side has one sodium atom while ptoduct side has 2 sodium atoms.
» The balanced equations mus be;
