Answer:
(2, 0)
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
- Solving systems of equations by graphing
Step-by-step explanation:
<u>Step 1: Define systems</u>
-20y - 7x = -14
10y - 2x = -4
<u>Step 2: Rewrite systems</u>
10y - 2x = -4
- Subtract 10y on both sides: -2x = -10y - 4
- Divide -2 on both sides: x = 5y + 2
<u>Step 3: Redefine systems</u>
-20y - 7x = -14
x = 5y + 2
<u>Step 4: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: -20y - 7(5y + 2) = -14
- Distribute -7: -20y - 35y - 14 = -14
- Combine like terms: -55y - 14 = -14
- Add 14 on both sides: -55y = 0
- Divide -55 on both sides: y = 0
<u>Step 5: Solve for </u><em><u>x</u></em>
- Define original equation: 10y - 2x = -4
- Substitute in <em>y</em>: 10(0) - 2x = -4
- Multiply: 0 - 2x - 4
- Simplify: -2x = -4
- Divide -2 on both sides: x = 2
<u>Step 6: Graph systems</u>
<em>Check solution set and systems.</em>