This problem is better understood with a given figure. Assuming
that the flight is in a perfect northwest direction such that the angle is 45°,
therefore I believe I have the correct figure to simulate the situation (see
attached).
Now we are asked to find for the value of the hypotenuse
(flight speed) given the angle and the side opposite to the angle. In this
case, we use the sin function:
sin θ = opposite side / hypotenuse
sin 45 = 68 miles per hr / flight
flight = 68 miles per hr / sin 45
<span>flight = 96.17 miles per hr</span>
Here is one <span>Jake’s salary depends on the number of hours he works.
The independent variable is the number of hours and the dependent variable is salary.
Let x = the number of hours worked
Let y = Jake's salary
The set of ordered pairs {(1, 10), (2, 20), (3, 30), (4, 40), (5, 50)} can be used to represent
the function, assuming Jake earns $10 per hour.
</span>
Answers
1.Slope-intercept form
2.Point-Slope form
3.Standard Form
4.Vertical Line
5.Horizonal Line
Answer:
ithe answer to your question is going to be c
-3x^2+12x-15=0
-3x^2+12x =15
-3x^2+12x+36=15