Answer:
The points for the given to linear equations is (5 , - 2) and (5 , - 1)
The points is plotted on the graph shown .
Step-by-step explanation:
Given as :
The two linear equation are
y =
x - 1 ...........1
y =
x - 6 ...........2
Now, Solving both the linear equations
Put the value of y from eq 2 into eq 1
I.e
x - 6 =
x - 1
Or,
x +
x = 6 - 1
Or,
x = 5
or,
x = 5
∴ x = 5
Now, Put the value of x in eq 1
So, y =
x - 1
Or, y =
× 5 - 1
or, y =
- 1
Or, y = - 1 - 1
I.e y = -2
So, For x = 5 , y = - 2
Point is (
,
) = (5 , - 2)
Again , put the value of x in eq 2
So, y =
x - 6
Or, y =
× 5 - 6
Or, y =
- 6
Or, y = 4 - 6
I.e y = - 2
So, For x = 5 , y = - 2
Point is (
,
) = (5 , - 2)
Hence, The points for the given to linear equations is (5 , - 2) and (5 , - 2)
The points is plotted on the graph shown . Answer
<span>1.Describe how the graph of y = x2 can be transformed to the graph of the given equation.
y = (x+17)2
Shift the graph of y = x2 left 17 units.
2.Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = (x-4)2-8
Shift the graph of y = x2 right 4 units and then down 8 units.
.Describe how to transform the graph of f into the graph of g.
f(x) = x2 and g(x) = -(-x)2
Reflect the graph of f across the y-axis and then reflect across the x-axis.
Question 4 (Multiple Choice Worth 2 points)
Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = x2 + 8
Shift the graph of y = x2 up 8 units.
Question 5 (Essay Worth 2 points)
Describe the transformation of the graph of f into the graph of g as either a horizontal or vertical stretch.
f as a function of x is equal to the square root of x and g as a function of x is equal to 8 times the square root of x
f(x) = √x, g(x) = 8√x
vertical stretch factor 8
Plz mark as brainlest</span>
30 x 28= 840
It's would beat 840 times in half an hour.
Answer:
A. 3t = 24
Step-by-step explanation:
$24 is the total amount spent.
$3 is the price per ticket.
so to get the number of tickets, t, you need the equation 3t = 24.
Answer:

Step-by-step explanation:
Let's pretend the empty, white space in the middle is a triangle. A right triangle. then we just use the pythogerean theorem to get the a.
