Yes. Even greater. Air resistance or drag becomes harder the faster an object goes. This is why when cars reach their max speed they don't accelerate as fast, because they are pushing harder against the wind. If I take a tennis ball and shoot it down a bottomless pit, a 400 kph, the drag will slow the ball down till it reaches terminal velocity.
Given Information:
Mass of electron = m = 9x10⁻³¹ kg
initial speed of electron = v₁ = 0.92c
Force = F = 1.4x10⁻¹³ J
Distance = d = 3 m
Required Information:
Final speed of electron = v₂ = ?
Answer:
Final speed of electron = v₂ = 2.974x10⁸ m/s
Explanation:
As we know from the conservation of energy,
E₂ - E₁ = W
E₂ = E₁ + W
Where E₂ is the final energy of electron and E₁ is the initial energy of electron
The above equation can be written in the form of particle energy
γ₂mc² = γ₁mc² + W
where γ₁ and γ₂ are given by
γ₁ = 1/√1 - (v₁/c)²
γ₂ = 1/√1 - (v₂/c)²
First calculate γ₁
γ₁ = 1/√1 - (0.92c/c)²
γ₁ = 2.55 m
Now calculate γ₂
γ₂ = (γ₁mc² + W)/mc²
First we need to find the work done
W = F*d
W = 1.4x10⁻¹³*3
W = 4.2x10⁻¹³ J
so γ₂ is
γ₂ = (2.55*9x10⁻³¹*(3x10⁸)² + 4.2x10⁻¹³)/9x10⁻³¹*(3x10⁸)²
γ₂ = 7.73
Now we can find the new speed of the electron
γ₂ = 1/√1 - (v₂/c)²
Re-arranging the above equation results in
v₂ = c*√(1 - 1/γ₂²)
v₂ = 3x10⁸*√(1 - 1/7.73²)
v₂ = 2.974x10⁸ m/s
Answer:
Heterogenous is when something is alike or similar.
Homogenous is when something is different or it varies.
Explanation:
Brainliest plzzz!!!
the answer is an anteater
Answer:
Explanation:
We shall apply conservation of mechanical energy
kinetic energy of alpha particle is converted into electric potential energy.
1/2 mv² = k q₁q₂/d , d is closest distance
d = 2kq₁q₂ / mv²
= 2 x 9 x 10⁹ x 79e x 2e / 4mv²
= 1422 x2x (1.6 x 10⁻¹⁹)² x 10⁹ /4x 1.67 x 10⁻²⁷ x (1.5 x 10⁷)²
= 3640.32 x 10⁻²⁹ /2x 3.7575 x 10⁻¹³
= 484.4 x 10⁻¹⁶
=48.4 x 10⁻¹⁵ m