The community off animals
Answer:
a) 
b) 
Explanation:
Given:
mass of ball, 
initial speed of the ball, 
mass of the person, 
a)
Using the conservation of linear momentum:
When the person catches the ball, assuming that the person catches it with an impact without absorbing the shock.



b)
When the ball hits the person and bounces off with the velocity of
.
Using the conservation of linear momentum:

where:
final speed of the ball after collision
final speed of the person after collision
initial velocity of the person = 0
putting the respective values in the above eq.


The electric force between the two particles are calculated through the equation,
F = kQ₁Q₂ / d²
where F is the force, k is a constant called Coulomb's law constant, Q₁ and Q₂ are the charges, and d is the distance. This equation is called the Coulomb's law.
It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance.
The answer to this item is therefore letter A.
Answer:
26.8 seconds
Explanation:
To solve this problem we have to use 2 kinematics equations: *I can't use subscripts for some reason on here so I am going to use these variables:
v = final velocity
z = initial velocity
x = distance
t = time
a = acceleration


First let's find the final velocity the plane will have at the end of the runway using the first equation:


Now we can plug this into the second equation to find t:


Then using 3 significant figures we round to 26.8 seconds