Answer:
Force A=-−2,697.75 N
Force B=13, 488.75 N
Explanation:
Taking moments at point A, the sum of clockwise and anticlockwise moments equal to zero.
25 mg-20Fb=0
25*1100g=20Fb
Fb=25*1100g/20=1375g
Taking g as 9.81 then Fb=1375*9.81=13,488.75 N
The sum of upward and downward forces are same hence Fa=1100g-1375g=-275g
-275*9.81=−2,697.75. Therefore, force A pulls downwards
Note that the centre of gravity is taken to be half the whole length hence half of 50 is 25 m because center of gravity is always at the middle
Answer:
A) B = 24 ft
B) H = 24.08 ft
C) M.A = 12.04
D) P = 13.7 lb
Explanation:
A)
Minimum allowable length of base of ramp can be found as follows:
Slope = H/B
where,
Slope = 1/12
H = Height of Ramp = 2 ft
B = Length of Base of Ramp = ?
Therefore,
1/12 = 2 ft/B
B = 2 ft * 12
<u>B = 24 ft</u>
B)
The length of the slope of ramp can be found by using pythagora's theorem:
L = √H² + B²
where,
H = Perpendicular = height = 2 ft
B = Base = Length of Base of Ramp = 24 ft
L = Hypotenuse = Length of Slope of Ramp = ?
Therefore,
H = √[(2 ft)² + (24 ft)²]
<u>H = 24.08 ft</u>
D)
The mechanical advantage of an inclined plane is given by the following formula:
M.A = L/H
M.A = 24.08 ft/2 ft
<u>M.A = 12.04</u>
D)
Another general formula for Mechanical Advantage is:
M.A = W/P
where,
W = Ideal Load = 165 lb
P = Ideal Effort Force = ?
Therefore,
12.04 = 165 lb/P
P = 165 lb/12.04
<u>P = 13.7 lb</u>
When astronauts travel to the moon, their bodies experience a lower gravitational pull than on Earth, the type of force they are experiencing is <span>A. tension. Tension is the opposite of compression which is pulling of the astronaut from the ground or Earth</span>
Answer:
middle ear has three bones! the hammer, anvil, stirrup, and ear drum
Explanation:
<h2>
Answer:</h2><h3><u>QUESTION①)</u></h3>
<em>✔ First step : calculate the kinetic energy that this car requires to reach 95 km/h</em>
95/ 3,6 ≈ 26,4 m/s
<em>Ec = ½ m x V² </em>
With Ec in J; m in kg; and V in m/s
- Ec = ½ 1750 x 26,4²
- Ec ≈ 610 000 J
<em>✔ Knowing that the car has a p power of 215,000 W, so :
</em>
T = E/P
- T = 610 000/215 000
- T ≈ 2.8 s
<h3>
The car takes 2.8 s to reach 95 km/h </h3>
<h3><u>QUESTION②)</u></h3>
N = 2,8/6,5 x 100 = 43.07
<h3>The car efficiency is 43 % </h3>