1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melomori [17]
3 years ago
10

The first device Faraday invented based on Ørsted’s observation was the motor. What did this device do?

Physics
2 answers:
NeX [460]3 years ago
8 0

Answer:

Faraday’s first device, a motor, used electricity and magnetism to create motion.

Explanation:

sineoko [7]3 years ago
7 0

Answer:

Faraday’s first device, a motor, used electricity and magnetism to create motion.

Explanation:

just trust me on this one

You might be interested in
How much electrical is use by a 350 W television that is operating for 25 minutes
Komok [63]

350Js^¹- *25*60s=525000J

7 0
3 years ago
Read 2 more answers
The viewing screen in a double-slit experiment with monochromatic light. Fringe C is the central maximum. The fringe separation
makvit [3.9K]

Answer:

<em>Part A</em><em>:</em>

a) If the wavelength of the light is decreased the fringe spacing Δy will decrease.

<em>Part B</em><em>:</em>

b) If the spacing between the slits is decreased the fringe spacing Δy will increase.

<em>Part C</em><em>:</em>

a) If the distance to the screen is decreased the fringe spacing will decrease.

<em>Part D</em><em>:</em>

The dot in the center of fringe E is 920\ x\ 10^{-9} m farther from the left slit than from the right slit.

Explanation:

In the double-slit experiment there is a clear contrast between the dark and bright fringes, that indicate destructive and constructive interference respectively, in the central peak and then is less so at either side.

The position of bright fringes in the screen where the pattern is formed can be calculated with

                      \vartriangle y =\frac{m \lambda L}{d}

                      m=0,\pm 1,\pm 2,\pm 3,.....

  1. m is the order number.
  2. \lambda is the wavelength of the monochromatic light.
  3. L is the distance between the screen and the two slits.
  4. d is the distance between the slits.
  • Part A:  a) In the above equation for the position of bright fringes we can see that if the wavelength of the light \lambda is decreased the overall effect will be that the fringes are going to be closer. That means that the fringe spacing Δy will decrease.
  • Part B:  b) In the above equation for the position of bright fringes we can see that if the spacing between the slits d is decreased the fringes are going to be wider apart. That means the fringe spacing Δy will increase.
  • Part C:  a) In the above equation we can see that if the distance to the screen L is decreased the fringes are going to be closer. That means the fringe spacing Δy will decrease.
  • Part D: We are told that the central maximum is the fringe C that corresponds with m=0. That means that fringe E corresponds with the order number m=2 if we consider it to be the second maximum at the rigth of the central one. To calculate how much farther from the left slit than from the right slit is a dot located at  the center of the fringe E in the screen we use the condition for constructive interference. That says that the  path length difference Δr between rays coming from the left and right slit must be \vartriangle r=m \lambda

        We simply replace the values in that equation :

                      \vartriangle r= m \lambda =2.\ 460\ nm

                      \vartriangle r= 920\ x\ 10^{-9} m

         The dot in the center of fringe E is 920\ x\ 10^{-9}m farther from the left slit than from the right slit.

     

       

       

     

3 0
3 years ago
A ball is thrown from a rooftop with an initial downward velocity of magnitude vo = 2.9 m/s. The rooftop is a distance above the
Step2247 [10]

Answer:

a) The velocity of the ball when it hits the ground is -20.5 m/s.

b) To acquire a final velocity of 27.3 m/s, the ball must be thrown from a height of 38 m.

Explanation:

I´ve found the complete question on the web:

<em />

<em>A ball is thrown from a rooftop with an initial downward velocity of magnitude v0=2.9 m/s. The rooftop is a distance above the ground, h= 21 m. In this problem use a coordinate system in which upwards is positive.</em>

<em>(a) Find the vertical component of the velocity with which the ball hits the ground.</em>

<em>(b) If we wanted the ball's final speed to be exactly 27, 3 m/s from what height, h (in meters), would we need to throw it with the same initial velocity?</em>

<em />

The equation of the height and velocity of the ball at any time "t" are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the ball at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

v = velocity of the ball at a time "t".

First, let´s find the time it takes the ball to reach the ground (the time at which h = 0)

h = h0 + v0 · t + 1/2 · g · t²

0 = 21 m - 2.9 m/s · t - 1/2 · 9.8 m/s² · t²

Solving the quadratic equation using the quadratic formula:

t = 1.8 s  ( the other solution of the quadratic equation is rejected because it is negative).

Now, using the equation of velocity, let´s find the velocity of the ball at

t = 1.8 s:

v = v0 + g · t

v = -2.9 m/s - 9.8 m/s² · 1.8 s

v = -20.5 m/s

The velocity of the ball when it hits the ground is -20.5 m/s.

b) Now we have the final velocity and have to find the initial height. Using the equation of velocity we can obtain the time it takes the ball to acquire that velocity:

v = v0 + g · t

-27.3 m/s = -2.9 m/s - 9.8 m/s² · t

(-27.3 m/s + 2.9 m/s) / (-9.8 m/s²) = t

t = 2.5 s

The ball has to reach the ground in 2.5 s to acquire a velocity of 27.3 m/s.

Using the equation of height, we can obtain the initial height:

h = h0 + v0 · t + 1/2 · g · t²

0 = h0 -2.9 m/s · 2.5 s - 1/2 · 9.8 m/s² · (2.5 s)²

-h0 = -2.9 m/s · 2.5 s - 1/2 · 9.8 m/s² · (2.5 s)²

h0 = 38 m

To acquire a final velocity of 27.3 m/s, the ball must be thrown from a height of 38 m.

6 0
4 years ago
How long will it take for a rock to fall 12 meters?
Amiraneli [1.4K]

Answer:

approximately 5.8 seconds

Explanation:

if you where to time how fast a rock would fall 12 meters it would approximately be 5.8 seconds

6 0
3 years ago
Please help!How is constant or uniform acceleration used to explain free fall?
garik1379 [7]
Free fall is a special case of motion with constant acceleration, because acceleration due to gravity is always constant and downward. For example, when a ball is thrown up in the air, the ball's velocity is initially upward.
4 0
3 years ago
Other questions:
  • Substances that protect body cells, including those of the immune system, from damage, are known as _____________.
    9·2 answers
  • What do we mean when we say that motion is relative? What is everyday motion usually related to
    14·1 answer
  • Why is it impossible to create a perpetual motion machine?
    14·1 answer
  • What do you notice about the three lines reflected from the convex mirror?
    14·1 answer
  • Air at 27oC and 1 atm flows over a flat plate 40 cm in length and 1 cm in width at a speed of 2 m/s. The plate is heated over it
    5·1 answer
  • Two ropes are attached to a 35 kg object. The first rope applies a force of 20 N and the second applies a force of 55 N. If the
    11·2 answers
  • How much power is needed to produce 500 joules of work if 20 watts are used?
    8·2 answers
  • On what factors does the gravity of a planet depend ?​
    13·2 answers
  • What is the intensity of sunlight on earth.
    10·1 answer
  • A mass on a spring is first placed on a table and set in SHM and then held vertically and set in SHM. What variable/s would chan
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!