Answer:
0.82 m
Explanation:
The ball is in free fall - uniform accelerated motion with constant acceleration downward,
(acceleration of gravity). So we can use the following suvat equation to solve the problem:

where
v is the final velocity
u = 4 m/s is the initial velocity
a is the acceleration
s is the displacement
At the maximum displacement, v = 0 (the velocity becomes zero). Substituting and solving for s, we find:

Answer:
Energy converted = 
Explanation:
Recall that Power is the rate at which energy is transferred therefore defined by the mathematical formula: 
Since the information on the power of the runner is given, as well as the time the energy conversion takes place, we can then use this equation to find how much energy is been converted. Notice that we just need to change the given time *10 minutes) into the appropriate units (seconds)to get the answer in SI units of energy (Joules). The conversion of 10 minutes into seconds is done by multiplying : 10 minutes * 60 seconds/minute = 600 seconds.
We use this then to find the energy converted by the runner:

Answer:
Part a)

Part b)

Explanation:
As we know that magnetic flux through the loop is given as

now we have

now rate of change in flux is given as

now we know that



Now plug in all data


Part b)
Now the radius of the loop after t = 1 s



Now plug in data in above equation


dimension = 30.0 m ✕ 15.0 m ✕ 5.0 m.
density = 1.20 kg/m3
(a)volume = lenght * breadth * height
= 30 * 15 * 5
= 2250 metre cube = 2.25 cubic meter
(b) mass of air = density * volume
mass of air = 1.2 * 2250
mass of air = 2700kg
weight = mass * 9.8
= 2700 * 9.8
= 26,460 N
- The definition of Density is the amount of matter in a given space, or volume
- Density = mass/volume
- units for density kg/m^3
- Density of water 1g/ml
- Salt water is denser that is why don't sink as easily.
To know more about density visit : brainly.com/question/15164682
#SPJ4
Answer:
The first law, also called the law of inertia, was pioneered by Galileo. This was quite a conceptual leap because it was not possible in Galileo's time to observe a moving object without at least some frictional forces dragging against the motion. In fact, for over a thousand years before Galileo, educated individuals believed Aristotle's formulation that, wherever there is motion, there is an external force producing that motion.
The second law, $ f(t)=m\,a(t)$ , actually implies the first law, since when $ f(t)=0$ (no applied force), the acceleration $ a(t)$ is zero, implying a constant velocity $ v(t)$ . (The velocity is simply the integral with respect to time of $ a(t)={\dot v}(t)$ .)
Newton's third law implies conservation of momentum [138]. It can also be seen as following from the second law: When one object ``pushes'' a second object at some (massless) point of contact using an applied force, there must be an equal and opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.
Explanation: