Answer:
There is not much that can be done to figure out how to write 0.1875 as a fraction, except to literally use what the decimal portion of your number, the .1875 , means. Since there are 5 digits in 1875 , the very last digit is the "100000th" decimal place. So we can just say that .1875 is the same as 1875/100000.
Step-by-step explanation:
Answer:
At 6 p.m., the number of cars in a parking lot is 120
Step-by-step explanation:
At 1 p.m., the number of cars in a parking lot is 78.
Given,

Note that

So, 1 p.m. goes for n = 0, then
6 p.m. goes for n = 5
Thus,

<span>You can probably just work it out.
You need non-negative integer solutions to p+5n+10d+25q = 82.
If p = leftovers, then you simply need 5n + 10d + 25q ≤ 80.
So this is the same as n + 2d + 5q ≤ 16
So now you simply have to "crank out" the cases.
Case q=0 [ n + 2d ≤ 16 ]
Case (q=0,d=0) → n = 0 through 16 [17 possibilities]
Case (q=0,d=1) → n = 0 through 14 [15 possibilities]
...
Case (q=0,d=7) → n = 0 through 2 [3 possibilities]
Case (q=0,d=8) → n = 0 [1 possibility]
Total from q=0 case: 1 + 3 + ... + 15 + 17 = 81
Case q=1 [ n + 2d ≤ 11 ]
Case (q=1,d=0) → n = 0 through 11 [12]
Case (q=1,d=1) → n = 0 through 9 [10]
...
Case (q=1,d=5) → n = 0 through 1 [2]
Total from q=1 case: 2 + 4 + ... + 10 + 12 = 42
Case q=2 [ n + 2 ≤ 6 ]
Case (q=2,d=0) → n = 0 through 6 [7]
Case (q=2,d=1) → n = 0 through 4 [5]
Case (q=2,d=2) → n = 0 through 2 [3]
Case (q=2,d=3) → n = 0 [1]
Total from case q=2: 1 + 3 + 5 + 7 = 16
Case q=3 [ n + 2d ≤ 1 ]
Here d must be 0, so there is only the case:
Case (q=3,d=0) → n = 0 through 1 [2]
So the case q=3 only has 2.
Grand total: 2 + 16 + 42 + 81 = 141 </span>
Answer: 76
Step-by-step explanation:
3 * 2 = 6
6* 2 = 12
2 * 32 = 64
12 + 64 = 76