It would be exactly 1.2778 yards.
Answer:
y = -4
Step-by-step explanation:
Step 1 :
Solving a Single Variable Equation :
1.1 Solve : y+4 = 0
Subtract 4 from both sides of the equation :
y = -4
One solution was found :
y = -4
Processing ends successfully
plz mark me as brainliest :)
Answer: The awnser is D.
Step-by-step explanation:
For part a: you just need to find how far the vertex has been moved from the origin, or the point (0,0). As the vertex is at the point (2,-3), it has been translated right 2 horizontally and down 3 vertically.
For part b: you use the info found in part a to create the equation in the form of y=A(x-h)^2+k. In this case, A =1, so you can ignore it. The h value is the horizontal distance the vertex has been moved. Since it has been moved right 2, this part of the equation would be (x-2). I know it seems like it should be plus 2, but values in parentheses come out opposite. For the k value, find the vertical shift, which is down3, or -3.
Now that you have h and k, substitute them back into the equation.
Your final answer for part b is: y=(x-2)^2 -3.
Answer:
Rachel
Step-by-step explanation:
We need to measure how far (towards the left) are the students from the mean in<em> “standard deviations units”</em>.
That is to say, if t is the time the student ran the mile and s is the standard deviation of the class, we must find an x such that
mean - x*s = t
For Rachel we have
11 - x*3 = 8, so x = 1.
Rachel is <em>1 standard deviation far (to the left) from the mean</em> of her class
For Kenji we have
9 - x*2 = 8.5, so x = 0.25
Kenji is <em>0.25 standard deviations far (to the left) from the mean</em> of his class
For Nedda we have
7 - x*4 = 8, so x = 0.25
Nedda is also 0.25 standard deviations far (to the left) from the mean of his class.
As Rachel is the farthest from the mean of her class in term of standard deviations, Rachel is the fastest runner with respect to her class.