We will set a variable, d, to represent the day of the week that January starts on. For instance, if it started on Monday, d + 1 would be Tuesday, d + 2 would be Wednesday, etc. up to d + 6 to represent the last day of the week (in our example, Sunday). The next week would start over at d, and the month would continue. For non-leap years:
If January starts on <u>d</u>, February will start 31 days later. Following our pattern above, this will put it at <u>d</u><u> + 3</u> (28 days would be back at d; 29 would be d+1, 30 would be d+2, and 31 is at d+3). In a non-leap year, February has 28 days, so March will start at <u>d</u><u>+3</u> also. April will start 31 days after that, so that puts us at d+3+3=<u>d</u><u>+6</u>. May starts 30 days after that, so d+6+2=d+8. However, since we only have 7 days in the week, this is actually back to <u>d</u><u>+1</u>. June starts 31 days after that, so d+1+3=<u>d</u><u>+4</u>. July starts 30 days after that, so d+4+2=<u>d</u><u>+6</u>. August starts 31 days after that, so d+6+3=d+9, but again, we only have 7 days in our week, so this is <u>d</u><u>+2</u>. September starts 31 days after that, so d+2+3=<u>d</u><u>+5</u>. October starts 30 days after that, so d+5+2=d+7, which is just <u>d</u><u />. November starts 31 days after that, so <u>d</u><u>+3</u>. December starts 30 days after that, so <u>d</u><u>+5</u>. Remember that each one of these expressions represents a day of the week. Going back through the list (in numerical order, and listing duplicates), we have <u>d</u><u>,</u> <u>d,</u><u /> <u>d</u><u>+1</u>, <u>d</u><u>+2</u>, <u>d+3</u><u>,</u> <u>d</u><u>+3</u>, <u>d</u><u>+3</u>, <u>d</u><u>+4</u>, <u>d</u><u>+5</u>, <u>d</u><u>+5</u>, <u /><u /><u>d</u><u>+6</u><u /><u /> and <u>d</u><u>+6</u>. This means we have every day of the week covered, therefore there is a Friday the 13th at least once a year (if every day of the week can begin a month, then every day of the week can happy for any number in the month).
For leap years, every month after February would change, so we have (in the order of the months) <u></u><u>d</u>, <u>d</u><u>+3</u>, <u>d</u><u>+4</u>, <u>d</u><u />, <u>d</u><u>+2</u>, <u>d</u><u /><u>+5</u>, <u>d</u><u />, <u>d</u><u>+3</u>, <u>d</u><u /><u>+6</u>, <u>d</u><u>+1</u>, <u>d</u><u>+4</u>, a<u />nd <u>d</u><u>+</u><u /><u /><u>6</u>. We still have every day of the week represented, so there is a Friday the 13th at least once. Additionally, none of the days of the week appear more than 3 times, so there is never a year with more than 3 Friday the 13ths.<u />
Answer:
d. backward sloping.
Step-by-step explanation:
The roommate receives a pay raise at her part-time job from $9 to $11 per hour and now decides to work 20 hours per week instead to 25 hours per week.
We can see that her rate is decreasing, so her labor supply curve is backward sloping or also called backward bending.
It is mostly found that worker's labor supply curve, slopes upward when they get lower wages and the curve bends backward when they get higher wages because a worker tends to work less when his wage rate rises.
Answer:
3+x<5x+2
Step-by-step explanation:
the sum of the number 3+xis less than so 3+x<5×x+2
<em>so</em><em> </em><em>final</em><em> </em><em>ans</em><em> </em><em>is</em><em> </em><em><u>3</u></em><em><u>+</u></em><em><u>x</u></em><em><u><</u></em><em><u>5</u></em><em><u>x</u></em><em><u>+</u></em><em><u>2</u></em>
Answer:
600 numbers
Step-by-step explanation:
For six-digit numbers, we need to use all digits 8,0,1,3,7,5 each once.
However, 0 cannot be used as the first digit, because it would make a 5-digit number.
Therefore
there are 5 choices for the first digit (exclude 0)
there are 5 choices for the first digit (include 0)
there are 4 choices for the first digit
there are 3 choices for the first digit
there are 2 choices for the first digit
there are 1 choices for the first digit
for a total of 5*5*4*3*2*1 = 600 numbers