Answer:
inverse of sin 1.6
or it can be written as sin^1 1.6
To answer this question, you can use a factor tree, or the table thing (I forgot what it’s called.)
You divide the number by one of its PRIME factors, until there is only one left. The numbers you divided it by are written as shown.
Hope this helps. :)
Answer:
The real zeros of f(x) are x = 0.3 and x = -3.3.
Step-by-step explanation:
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
In this problem, we have that:
![f(x) = x^{2} + 3x - 1](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%5E%7B2%7D%20%2B%203x%20-%201)
So
![a = 1, b = 3, c = -1](https://tex.z-dn.net/?f=a%20%3D%201%2C%20b%20%3D%203%2C%20c%20%3D%20-1)
The real zeros of f(x) are x = 0.3 and x = -3.3.
Answer:
- The value of 0.9* 10² is <u>D</u><u>.</u><u>9</u><u>0</u><u>.</u>
- <u>4</u><u>*</u><u>(</u><u>1</u><u>2</u><u>-</u><u>8</u><u>)</u><u>+</u><u>2</u><u>³</u>
a.
<u>False</u><u> </u><u>:</u><u> </u><u>it</u><u> </u><u>is</u><u> </u><u>to</u><u> </u><u>add</u><u> </u><u>1</u><u>6</u><u>+</u><u>8</u>
<u>b</u><u>.</u>
<u>False</u><u> </u><u>:</u><u> </u><u>its</u><u> </u><u>8</u><u>.</u>
<u>c</u><u>.</u>
<u>True</u><u>.</u>
<u>d</u><u>.</u>
<u>False</u><u> </u><u>:</u><u> </u><u>its</u><u> </u><u>2</u><u>4</u><u>.</u>
<u>3</u><u>.</u>
<u>side</u><u> </u><u> </u> of cube [a]=2ft
volume of cube [V]=a³=2³=8ft³
<u>He</u><u> </u><u>needs</u><u> </u><u>1</u><u> </u><u>bag</u><u> </u><u>to</u><u> </u><u>buy</u><u>.</u><u>As</u><u> </u><u>its</u><u> </u><u>volume</u><u> </u><u>is</u><u> </u><u>equal</u><u>.</u>
Answer:
The answer to your question is 55 ft
Step-by-step explanation:
Data
Person's height = 5 ft
Person's shadow = 10 ft
Tree's height = ?
Tree's shadow = 110 ft
- Use the Thales' theorem to solve this problem
Person's height / Person's shadow = Tree's height / Tree's shadow
- Substitution
5 / 10 = x / 110
-Solve for x
x = 5 (110) / 10
-Simplification
x = 550 / 10
-Result
x = 55 ft
-Conclusion
The tree is 55 ft height