<h2><u>Part A:</u></h2>
Let's denote no of seats in first row with r1 , second row with r2.....and so on.
r1=5
Since next row will have 10 additional row each time when we move to next row,
So,
r2=5+10=15
r3=15+10=25
<u>Using the terms r1,r2 and r3 , we can find explicit formula</u>
r1=5=5+0=5+0×10=5+(1-1)×10
r2=15=5+10=5+(2-1)×10
r3=25=5+20=5+(3-1)×10
<u>So for nth row,</u>
rn=5+(n-1)×10
Since 5=r1 and 10=common difference (d)
rn=r1+(n-1)d
Since 'a' is a convention term for 1st term,
<h3>
<u>⇒</u><u>rn=a+(n-1)d</u></h3>
which is an explicit formula to find no of seats in any given row.
<h2><u>Part B:</u></h2>
Using above explicit formula, we can calculate no of seats in 7th row,
r7=5+(7-1)×10
r7=5+(7-1)×10 =5+6×10
r7=5+(7-1)×10 =5+6×10 =65
which is the no of seats in 7th row.
Answer:
- the given dimension was used as the radius
- 5.57 m³
Step-by-step explanation:
The volume of a sphere can be found using the formula ...
V = 4/3πr³ . . . . . where r is the radius
__
The figure points to a diameter line and indicates 2.2 m. The arrowhead is in the middle of a radius line, making it easy to interpret the dimension as the radius of the sphere.
If 2.2 m is used as the radius, the volume is computed to be ...
V = 4/3π(2.2 m)³ ≈ 44.58 m³
This agrees with your friend's volume, suggesting the diameter was used in place of the radius in the computation.
__
The correct volume, using 2.2 m as the diameter, is ...
V = 4/3π(1.1 m)³ ≈ 5.57 m³
Answer:

Step-by-step explanation:
Given: 
To find: angle to the nearest degree
Solution:
A triangle is a polygon that has three sides, three angles ,and three vertices.
Trigonometry explains the relationship between the sides and angles of the triangle.
The angle can be expressed in two forms: degrees or radians.

One solution because when you switch the - to the other side it will be positive which will equal one and make it one solution.
Answer:
box is there so I'll put the money in the post