Answer:
g(x)<j(x)<k(x)<f(x)<m(x)<h(x)
Step-by-step explanation:
1.![f(x)=\frac{x^2+x-20}{x^2+4}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cfrac%7Bx%5E2%2Bx-20%7D%7Bx%5E2%2B4%7D)
The denominator of f is defined for all real values of x
Therefore, the function is continuous on the set of real numbers
![\lim_{x\rightarrow 5}\frac{x^2+x-20}{x^2+4}=\frac{25+5-20}{25+4}=\frac{10}{29}=0.345](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow%205%7D%5Cfrac%7Bx%5E2%2Bx-20%7D%7Bx%5E2%2B4%7D%3D%5Cfrac%7B25%2B5-20%7D%7B25%2B4%7D%3D%5Cfrac%7B10%7D%7B29%7D%3D0.345)
3.![h(x)=\frac{3x-5}{x^2-5x+7}](https://tex.z-dn.net/?f=h%28x%29%3D%5Cfrac%7B3x-5%7D%7Bx%5E2-5x%2B7%7D)
![x^2-5x+7=0](https://tex.z-dn.net/?f=x%5E2-5x%2B7%3D0)
It cannot be factorize .
Therefore, it has no real values for which it is not defined .
Hence, function h is defined for all real values.
![\lim_{x\rightarrow 5}\frac{3x-5}{x^2-5x+7}=\frac{15-5}{25-25+7}=\frac{10}{7}=1.43](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow%205%7D%5Cfrac%7B3x-5%7D%7Bx%5E2-5x%2B7%7D%3D%5Cfrac%7B15-5%7D%7B25-25%2B7%7D%3D%5Cfrac%7B10%7D%7B7%7D%3D1.43)
2.![g(x)=\frac{x-17}{x^2+75}](https://tex.z-dn.net/?f=g%28x%29%3D%5Cfrac%7Bx-17%7D%7Bx%5E2%2B75%7D)
The denominator of g is defined for all real values of x.
Therefore, the function g is continuous on the set of real numbers
![\lim_{x\rightarrow 5}\frac{x-17}{x^2+75}=\frac{5-17}{25+75}=\frac{-12}{100}=-0.12](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow%205%7D%5Cfrac%7Bx-17%7D%7Bx%5E2%2B75%7D%3D%5Cfrac%7B5-17%7D%7B25%2B75%7D%3D%5Cfrac%7B-12%7D%7B100%7D%3D-0.12)
4.![i(x)=\frac{x^2-9}{x-9}](https://tex.z-dn.net/?f=i%28x%29%3D%5Cfrac%7Bx%5E2-9%7D%7Bx-9%7D)
x-9=0
x=9
The function i is not defined for x=9
Therefore, the function i is not continuous on the set of real numbers.
5.![j(x)=\frac{4x^2-7x-65}{x^2+10}](https://tex.z-dn.net/?f=j%28x%29%3D%5Cfrac%7B4x%5E2-7x-65%7D%7Bx%5E2%2B10%7D)
The denominator of j is defined for all real values of x.
Therefore, the function j is continuous on the set of real numbers.
![\lim_{x\rightarrow 5}\frac{4x^2-7x-65}{x^2+10}=\frac{100-35-65}{25+10}=0](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow%205%7D%5Cfrac%7B4x%5E2-7x-65%7D%7Bx%5E2%2B10%7D%3D%5Cfrac%7B100-35-65%7D%7B25%2B10%7D%3D0)
6.![k(x)=\frac{x+1}{x^2+x+29}](https://tex.z-dn.net/?f=k%28x%29%3D%5Cfrac%7Bx%2B1%7D%7Bx%5E2%2Bx%2B29%7D)
![x^2+x+29=0](https://tex.z-dn.net/?f=x%5E2%2Bx%2B29%3D0)
It cannot be factorize .
Therefore, it has no real values for which it is not defined .
Hence, function k is defined for all real values.
![\lim_{x\rightarrow 5}\frac{x+1}{x^2+x+29}=\frac{5+1}{25+5+29}=\frac{6}{59}=0.102](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow%205%7D%5Cfrac%7Bx%2B1%7D%7Bx%5E2%2Bx%2B29%7D%3D%5Cfrac%7B5%2B1%7D%7B25%2B5%2B29%7D%3D%5Cfrac%7B6%7D%7B59%7D%3D0.102)
7.![l(x)=\frac{5x-1}{x^2-9x+8}](https://tex.z-dn.net/?f=l%28x%29%3D%5Cfrac%7B5x-1%7D%7Bx%5E2-9x%2B8%7D)
![x^2-9x+8=0](https://tex.z-dn.net/?f=x%5E2-9x%2B8%3D0)
![x^2-8x-x+8=0](https://tex.z-dn.net/?f=x%5E2-8x-x%2B8%3D0)
![x(x-8)-1(x-8)=0](https://tex.z-dn.net/?f=x%28x-8%29-1%28x-8%29%3D0)
![(x-8)(x-1)=0](https://tex.z-dn.net/?f=%28x-8%29%28x-1%29%3D0)
![x=8,1](https://tex.z-dn.net/?f=x%3D8%2C1)
The function is not defined for x=8 and x=1
Hence, function l is not defined for all real values.
8.![m(x)=\frac{x^2+5x-24}{x^2+11}](https://tex.z-dn.net/?f=m%28x%29%3D%5Cfrac%7Bx%5E2%2B5x-24%7D%7Bx%5E2%2B11%7D)
The denominator of m is defined for all real values of x.
Therefore, the function m is continuous on the set of real numbers.
![\lim_{x\rightarrow 5}\frac{x^2+5x-24}{x^2+11}=\frac{25+25-24}{25+11}=\frac{26}{36}=\frac{13}{18}=0.722](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow%205%7D%5Cfrac%7Bx%5E2%2B5x-24%7D%7Bx%5E2%2B11%7D%3D%5Cfrac%7B25%2B25-24%7D%7B25%2B11%7D%3D%5Cfrac%7B26%7D%7B36%7D%3D%5Cfrac%7B13%7D%7B18%7D%3D0.722)
g(x)<j(x)<k(x)<f(x)<m(x)<h(x)