Answer:
1. The ground state describes the lowest possible energy that an atom can have. An electron is normally in its ground state, the lowest energy state available.
2. In a metal, atoms readily lose electrons to form positive ions (cations). These ions are surrounded by delocalized electrons, which are responsible for conductivity. The solid produced is held together by electrostatic interactions between the ions and the electron cloud. These interactions are called metallic bonds. The metallic bonding model explains the physical properties of metals. Metals conduct electricity and heat very well because of their free-flowing electrons. As electrons enter one end of a piece of metal, an equal number of electrons flow outward from the other end.
3. Physical properties are affected by the strength of intermolecular forces. Melting, boiling, and freezing points increase as intermolecular forces increase. Vapor pressure decreases as intermolecular forces increase. The physical state and properties of a particular compound depend in large part on the type of chemical bonding it displays. This is because the energy required to disrupt the intermolecular forces between molecules is far less than the energy required to break the ionic bonds in a crystalline ionic compound.
Explanation:
This is from 38 minutes ago. Sorry for late reply. I really hope this helps. :)
If a chemical reaction catalyzed by an enzyme is being carried out, and there is a sudden, drastic decrease in temperature, the thing that will most likely to happen next is going to be the :
“enzyme activity will decrease, and the reaction will proceed very slowly, or possibly not at all.“
Explanation:
This compliance is required to how enzymes bind to other molecules and cause chemical reactions to occur on those molecules. Lowering the temperature reduces the motion of molecules and atoms, expecting this compliance is reduced or lost. As the temperature decreases, so do enzyme activity. While higher temperatures do increase the activity of enzymes and the rate of reactions,
Answer : The chemical formula for the compound is, 
Explanation :
When the element 'M' react with the
to give
.
The balanced chemical reaction is,

In this reaction, 'M' is in mono-atomic form and
is in diatomic form.
By the stoichiometry,
2 moles 'M' react with the 1 mole of
to give 2 moles of
.
Therefore, the chemical formula of the compound is, 