Answer:
Δ S = 93.8 J/mol-K
Explanation:
Given,
Boiling point of chloroform = 61.7 °C
= 273 + 61.7 = 334.7 K.
Enthalapy of vapourization = 31.4 kJ/mol.
Using Gibbs free energy equation
Δ G = Δ H - T (ΔS)
at equilibrium (when the liquid is boiling), Δ G = 0
so, 0 = ΔH - T (Δ S)
T (Δ S) = Δ H
and ΔS = ΔH / T
Δ S = (31400 J/mol.) / 334.7 K
Δ S = 93.8 J/mol-K
Answer:
- 1.602 x 10⁻¹⁹coulombs
Explanation:
Charge on individual oil droplet would be multiple of charge on one electron . So we will find out the minimum common factor of given individual charges that is the LCM of all the charges given.
LCM of given charges like 3.204 , 4.806 ,8.01 and 14.42 . We have neglected the power of ten( 10⁻¹⁹) because it is already a common factor to all.
The LCM is 1.602 . So charge on electron is 1.602 x 10⁻¹⁹.
<h2>Hey there!</h2>
<h3>The correct option is (A) It has a partial negative charge on oxygen and a partial positive charge on hydrogen.</h3>
<h3>☆ Explanation:</h3>
¤ As water has the ability to form hydrogen bonds which makes it an excellent solvent.
¤ For this ability of water it can dissolve many different kinds of molecules.
<h2>Hope it helps </h2>
Fine particles, ground level ozone, sulfur dioxide, nitrogen dioxide, lead