1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lorasvet [3.4K]
3 years ago
8

SELECT ALL of the Angles that are supplementary to Angle 7 **NO LINKS**

Mathematics
1 answer:
sergejj [24]3 years ago
5 0

Answer:

The angles are 6,4,8and2 hope this helps

You might be interested in
How do you simplify 77.28/9.2
Alinara [238K]

The answer is 8.4 all you do is divide them together to get your answer.

4 0
4 years ago
What is your favorite type of movie? (Ex. Romance, Horror, Humor, etc) I need to collect some data for a bar graph.
Galina-37 [17]
My favorite genre is horror
5 0
3 years ago
Read 2 more answers
State the Pythagorean Theorem in your own words
Solnce55 [7]

Answer:

A ^2 + B^2 =C^2. The Pythagorean Theorem is a statement about triangles containing a right angle

Step-by-step explanation:

6 0
4 years ago
<img src="https://tex.z-dn.net/?f=log_%7B8%20x%5E%7B2%7D%20-23x%2B15%7D%282x-2%29%20%5Cleq%200" id="TexFormula1" title="log_{8 x
grandymaker [24]
\log_{8x^2-23x+15} (2x-2) \leq 0

The domain:
The number of which the logarithm is taken must be greater than 0.
2x-2 \ \textgreater \  0 \\&#10;2x\ \textgreater \ 2 \\&#10;x\ \textgreater \ 1 \\ x \in (1, +\infty)

The base of the logarithm must be greater than 0 and not equal to 1.
* greater than 0:
8x^2-23x+15\ \textgreater \ 0 \\ 8x^2-8x-15x+15\ \textgreater \ 0 \\ 8x(x-1)-15(x-1)\ \textgreater \ 0 \\ (8x-15)(x-1)\ \textgreater \ 0 \\ \\ \hbox{the zeros:} \\ 8x-15=0 \ \lor \ x-1=0 \\ 8x=15 \ \lor \ x=1 \\ x=\frac{15}{8} \\ x=1 \frac{7}{8} \\ \\&#10;\hbox{the coefficient of } x^2 \hbox{ is greater than 0 so the parabola op} \hbox{ens upwards} \\&#10;\hbox{the values greater than 0 are between } \pm \infty \hbox{ and the zeros} \\ \\&#10;x \in (-\infty, 1) \cup (1 \frac{7}{8}, +\infty)

*not equal to 1:
8x^2-23x+15 \not= 1 \\&#10;8x^2-23x+14 \not= 0 \\&#10;8x^2-16x-7x+14 \not= 0 \\&#10;8x(x-2)-7(x-2) \not= 0 \\&#10;(8x-7)(x-2) \not= 0 \\&#10;8x-7 \not=0 \ \land \ x-2 \not= 0 \\&#10;8x \not= 7 \ \land \ x \not= 2 \\&#10;x \not= \frac{7}{8} \\ x \notin \{\frac{7}{8}, 2 \}

Sum up all the domain restrictions:
x \in (1, +\infty) \ \land \ x \in (-\infty, 1) \cup (1 \frac{7}{8}, +\infty) \ \land \ x \notin \{ \frac{7}{8}, 2 \} \\ \Downarrow \\&#10;x \in (1 \frac{7}{8}, 2) \cup (2, +\infty)&#10;

The solution:
\log_{8x^2-23x+15} (2x-2) \leq 0 \\ \\&#10;\overline{\hbox{convert 0 to the logarithm to base } 8x^2-23x+15} \\&#10;\Downarrow \\&#10;\underline{(8x^2-23x+15)^0=1 \hbox{ so } 0=\log_{8x^2-23x+15} 1 \ \ \ \ \ \ \ }&#10;\\ \\&#10;\log_{8x^2-23x+15} (2x-2) \leq \log_{8x^2-23x+15} 1

Now if the base of the logarithm is less than 1, then you need to flip the sign when solving the inequality. If it's greater than 1, the sign remains the same.

* if the base is less than 1:
 8x^2-23x+15 \ \textless \  1 \\&#10;8x^2-23x+14 \ \textless \  0 \\ \\&#10;\hbox{the zeros have already been calculated: they are } x=\frac{7}{8} \hbox{ and } x=2 \\&#10;\hbox{the coefficient of } x^2 \hbox{ is greater than 0 so the parabola ope} \hbox{ns upwards} \\&#10;\hbox{the values less than 0 are between the zeros} \\ \\&#10;x \in (\frac{7}{8}, 2) \\ \\&#10;\hbox{including the domain:} \\&#10;x \in (\frac{7}{8}, 2) \ \land \ x \in (1 \frac{7}{8}, 2) \cup (2, +\infty) \\ \Downarrow \\ x \in (1 \frac{7}{8} , 2)

The inequality:
\log_{8x^2-23x+15} (2x-2) \leq \log_{8x^2-23x+15} 1 \ \ \ \ \ \ \ |\hbox{flip the sign} \\ 2x-2 \geq 1 \\ 2x \geq 3 \\ x \geq \frac{3}{2} \\ x \geq 1 \frac{1}{2} \\ x \in [1 \frac{1}{2}, +\infty) \\ \\ \hbox{including the condition that the base is less than 1:} \\ x \in [1 \frac{1}{2}, +\infty) \ \land \x \in (1 \frac{7}{8} , 2) \\ \Downarrow \\ x \in (1 \frac{7}{8}, 2)

* if the base is greater than 1:
8x^2-23x+15 \ \textgreater \ 1 \\ 8x^2-23x+14 \ \textgreater \ 0 \\ \\ \hbox{the zeros have already been calculated: they are } x=\frac{7}{8} \hbox{ and } x=2 \\ \hbox{the coefficient of } x^2 \hbox{ is greater than 0 so the parabola ope} \hbox{ns upwards} \\ \hbox{the values greater than 0 are between } \pm \infty \hbox{ and the zeros}

x \in (-\infty, \frac{7}{8}) \cup (2, +\infty) \\ \\ \hbox{including the domain:} \\ x \in (-\infty, \frac{7}{8}) \cup (2, +\infty) \ \land \ x \in (1 \frac{7}{8}, 2) \cup (2, +\infty) \\ \Downarrow \\ x \in (2, \infty)

The inequality:
\log_{8x^2-23x+15} (2x-2) \leq \log_{8x^2-23x+15} 1 \ \ \ \ \ \ \ |\hbox{the sign remains the same} \\ 2x-2 \leq 1 \\ 2x \leq 3 \\ x \leq \frac{3}{2} \\ x \leq 1 \frac{1}{2} \\ x \in (-\infty, 1 \frac{1}{2}] \\ \\ \hbox{including the condition that the base is greater than 1:} \\ x \in (-\infty, 1 \frac{1}{2}] \ \land \ x \in (2, \infty) \\ \Downarrow \\ x \in \emptyset

Sum up both solutions:
x \in (1 \frac{7}{8}, 2) \ \lor \ x \in \emptyset \\ \Downarrow \\&#10;x \in (1 \frac{7}{8}, 2)

The final answer is:
\boxed{x \in (1 \frac{7}{8}, 2)}
5 0
3 years ago
The ratio of children to adults at the football game was 23. If there were 140 children at the football game,
inessss [21]

Answer:

Therefore, the number of adults at the football game was 6.

Step-by-step explanation:

Let A represents the number of adults and C represents the number of children.

Therefore, the ratio of children to adults is given as follows:

23:1 = C:A ....................... (1)

Since C = 140, this is substituted into equation (1) as follows:

23:1 = = 140:A ....................... (2)

Transforming equation (2) and solve for A, we have:

23 / (23 + 1) = 140 / (140 + A)

23 / 24 = 140 / (140 + A)

0.958333333333333 = 140 / (140 + A)

0.958333333333333 (140 + A) = 140

(0.958333333333333 * 140) + 0.958333333333333A = 140

134.166666666667 + 0.958333333333333A = 140

0.958333333333333A = 140 -134.166666666667

0.958333333333333A = 5.833333333333

A = 5.833333333333 / 0.958333333333333

A = 6.08695652173878

Rounding to a whole number, we have:

A = 6

Therefore, the number of adults at the football game was 6.

5 0
3 years ago
Other questions:
  • 3/4 ( 1/2× -12) + 4/5
    15·2 answers
  • Find the product using expanded form.<br>5 X 63 =_ x_( _+_)<br>= (_ X_) + (_ X_)<br>= _+_<br>=_​
    13·1 answer
  • The product of a number and nine is added to five. The result is thirty-eight more than the product of six and the original numb
    15·1 answer
  • -6(c-2)=2(-3x+6)<br><br> Also maybe explaination
    6·1 answer
  • Which lengths could be the sides KLM of the triangle, respectively?
    14·2 answers
  • A banana bread recipe that makes 444 loaves calls for 121212 bananas. If you are making 242424 loaves, how many bananas do you n
    12·2 answers
  • A) What step I messed up on?
    7·1 answer
  • 13+(14+x)=. please answer
    10·1 answer
  • QUICK I WILL MARK BRAINLYIST
    11·1 answer
  • There are 9.5 ounces of juice in a container. An additional 1.75 ounces of juice are poured into the container each second. How
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!