1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
2 years ago
14

Y plus 4 plus 3(y plus 2)

Mathematics
2 answers:
Serga [27]2 years ago
5 0

Answer:

5y+11

Step-by-step explanation:

y+3+4(y+2)

Use the distributive property to multiply 4 by y+2.

y+3+4y+8

Combine y and 4y to get 5y.

5y+3+8

Add 3 and 8 to get 11.

Iteru [2.4K]2 years ago
5 0
2(2y+5)

Hope this helps! :)
You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Mitch is replacing all the light bulbs in his home with energy efficient LED light bulbs. How many packages of 4 will he need to
lapo4ka [179]
C) 22

86/4 = 21.5
*5 Or more, raise the score*
(rounds to 22)
you should have 2 lightbulbs left over but you would be 2 lightbulbs short if you were to get 21 packages as opposed to 22
6 0
4 years ago
NO SILLY ANSWERS PLEASE <br> Can someone help me with this?
marusya05 [52]
Keep in mind that, when the logarithm base is not explicitly written, base 10 is assumed, therefore,

\bf \textit{Logarithm Cancellation Rules}\\\\&#10;log_a a^x\implies x\qquad \qquad a^{log_ax}=x\\\\&#10;-------------------------------\\\\&#10;10^{log(3)}+log(100)\implies 10^{log_{10}(3)}+log_{10}(100)\implies 3+log_{10}(10^2)&#10;\\\\\\&#10;3+2\implies 5
7 0
4 years ago
I you were flipping a nickel a dime and a quarter how many possible outcomes are possible for getting heads or tails
zhuklara [117]
3/6 possible out comes for heads and tails
8 0
4 years ago
To keep up with rising expenses, a motel manager
Tema [17]
<span>22% of $40 is $8.80 so the now rate should be $40.00+$8.80=$48.80</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the product? (9t − 4)(−9t − 4) −81t2 − 16 −81t2 + 16 −81t2 − 72t + 16 −81t2 + 72t + 16
    12·2 answers
  • The supplement of angle t is 4 times the measure of angle t
    14·1 answer
  • boy ton's famous hot dogs can prepare hot dogs at a constant rate of 13 hot dogs/minute. how many hot dogs can boy ton's famous
    13·1 answer
  • A newspaper carrier has ​$4.254.25 in change. he has sevenseven more quarters than dimes but twotwo times as many nickels as qua
    8·1 answer
  • How do you find the m of 2 sides of a right triangle and only being given one side which is 16
    5·1 answer
  • I'm all for a band being politically active, but that band takes _______ too seriously. What pronoun goes in the blank?
    7·2 answers
  • Solve for P. P + 0.4 = -6 A: -6.4 B: -5.6 C: 5.6 D: 6.4 Please tell me how you got the answer
    9·1 answer
  • What is the common difference in the following arithmetic sequence
    15·1 answer
  • What is the circumference of this circle? (Use C = <img src="https://tex.z-dn.net/?f=%5Cpi" id="TexFormula1" title="\pi" alt="\p
    13·2 answers
  • *
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!