Answer:
The probability that a student chosen at random is fluent in English or Swahili.
P(S∪E) = 1.1
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given total number of students n(T) = 150
Given 125 of them are fluent in Swahili
Let 'S' be the event of fluent in Swahili language
n(S) = 125
The probability that the fluent in Swahili language
![P(S) = \frac{n(S)}{n(T)} = \frac{125}{150} = 0.8333](https://tex.z-dn.net/?f=P%28S%29%20%3D%20%5Cfrac%7Bn%28S%29%7D%7Bn%28T%29%7D%20%3D%20%5Cfrac%7B125%7D%7B150%7D%20%3D%200.8333)
Let 'E' be the event of fluent in English language
n(E) = 135
The probability that the fluent in English language
![P(E) = \frac{n(E)}{n(T)} = \frac{135}{150} = 0.9](https://tex.z-dn.net/?f=P%28E%29%20%3D%20%5Cfrac%7Bn%28E%29%7D%7Bn%28T%29%7D%20%3D%20%5Cfrac%7B135%7D%7B150%7D%20%3D%200.9)
n(E∩S) = 95
The probability that the fluent in English and Swahili
![P(SnE) = \frac{n(SnE)}{n(T)} = \frac{95}{150} = 0.633](https://tex.z-dn.net/?f=P%28SnE%29%20%3D%20%5Cfrac%7Bn%28SnE%29%7D%7Bn%28T%29%7D%20%3D%20%5Cfrac%7B95%7D%7B150%7D%20%3D%200.633)
<u><em>Step(ii):</em></u>-
The probability that a student chosen at random is fluent in English or Swahili.
P(S∪E) = P(S) + P(E) - P(S∩E)
= 0.833+0.9-0.633
= 1.1
<u><em>Final answer:-</em></u>
The probability that a student chosen at random is fluent in English or Swahili.
P(S∪E) = 1.1